The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6 < p_{\rm T} <50$ GeV/$c$. The meson is reconstructed via the $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The results are compared with various theoretical calculations: PYTHIA8.2 with the Monash 2013 tune overestimates the data by up to 50%, whereas good agreement is observed with Next-to-Leading Order (NLO) calculations incorporating $\omega$ fragmentation using a broken SU(3) model. The $\omega/\pi^0$ ratio is presented and compared with theoretical calculations and the available measurements at lower collision energies. The presented data triples the $p_{\rm T}$ ranges of previously available measurements. A constant ratio of $C^{\omega/\pi^0}=0.578\pm0.006~\text{(stat.)}\pm 0.013~\text{(syst.)}$ is found above a transverse momentum of 4 GeV/$c$, which is in agreement with previous findings at lower collision energies within the systematic and statistical uncertainties.
Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 13 TeV, the uncertainty of sigma_{MB} of 1.58% is not included in the systematic error.
The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 13 TeV.
ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ}<\theta<50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15}
Muon multiplicity distribution measured with the ALICE apparatus and obtained for the whole data sample of Run 2 corresponding to a live time of 62.5 days. The data points are grouped in multiplicity intervals with a width of five units ($N_\mu=5-9,~N_\mu=10-14,~...$), and are located at the center of each interval ($N_\mu=7,~N_\mu=12,~...$). The vertical error bars represent the statistical uncertainties.
Muon multiplicity distribution measured with the ALICE apparatus and obtained for the whole data sample of Run 2 corresponding to a live time of 62.5 days. The data are the same as Fig. 3 but each bin corresponds to a single muon multiplicity ($N_\mu=1,2,3,~...$); the distribution starts at $N_\mu=5$. The vertical error bars represent the statistical uncertainties.
Measured muon multiplicity distribution compared with simulations from CORSIKA Monte Carlo generator using QGSJET-II-04 (top), SIBYLL 2.3 (middle), and EPOS-LHC (bottom) as hadronic interaction models for proton and iron primary cosmic rays. Iron points are slightly shifted to the right to avoid overlapping with the data points. The total uncertainties in the MC simulations are given by the vertical bars, while the boxes give the systematic uncertainties of the data and the vertical bars the statistical ones.
The production of (multi-)strange hadrons is measured at midrapidity in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV as a function of the local charged-particle multiplicity in the pseudorapidity interval ${|\eta|<0.5}$ and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters (ZDC). The latter provides information on the effective energy available for particle production in the collision once subtracted from the centre-of-mass energy. The yields of ${\rm K}^{0}_{\rm{S}}$, $\Lambda+\overline{\Lambda}$, and $\Xi^{-}+\overline{\Xi}^{+}$ per charged-particle increase with the effective energy. In addition, this work exploits a multi-differential approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The results presented in this article provide new insights into the interplay between global properties of the collision, such as the initial available energy in the event, and the locally produced final hadronic state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of strange baryon production with effective energy is observed for fixed charged-particle multiplicity at midrapidity. These results are discussed within the context of existing phenomenological models of hadronisation implemented in different tunes of the PYTHIA 8 event generator.
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the standalone classification (V0M event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the high-local-multiplicity classification (V0M+SPDClusters event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the low-local-multiplicity classification (V0M+SPDClusters event classes).
Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at $\sqrt{s}=13$ TeV. The correlation functions are measured as a function of the relative azimuthal angle $\Delta\varphi$ and the pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum range $1 < p_{\rm T} < 8$ GeV/$c$. Near-side ($|\Delta\varphi|<1.3$) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation ($|\Delta\eta|<1.8$), while the per-trigger associated near-side yields are extracted for the short-range correlations ($|\Delta\eta|<1.3$). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region ($p_{\rm T} < 3$ GeV/$c$). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems.
Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $1.0 < p_\mathrm{T, assoc} < p_\mathrm{T, trig} < 2.0$ GeV/$c$. The multiplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, trig} < 3.0$ GeV/$c$ and $1.0 < p_\mathrm{T, assoc} < 2.0$ GeV/$c$. The mulitplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, assoc} < p_\mathrm{T, trig} < 3.0$ GeV/$c$. The multiplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
This paper reports the first measurement of the transverse momentum ($p_{\mathrm{T}}$) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at $\sqrt{s}=13$ TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, $2.8<\eta<5.1$ and $-3.7<\eta<-1.7$. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger $p_{\mathrm{T}}$ due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to $p_{\mathrm{T}}=20$ GeV/$c$. The event selection requires at least one charged particle produced in the pseudorapidity interval $|\eta|<1$. The measured $p_{\mathrm{T}}$ distributions, average $p_{\mathrm{T}}$, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the $p_{\mathrm{T}}$-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate $p_{\mathrm{T}}$ ($2
Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $p + \overline{p}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at centre-of-momentum energy of $\sqrt{s}=13$ TeV collected during the LHC Run 2 data-taking period. The measurement is performed by combining the measurements of the electromagnetic calorimeter EMCal and the central tracking detectors ITS and TPC, covering a pseudorapidity range of $|\eta^{\gamma}|<0.67$ and a transverse momentum range of $7
Differential cross section of isolated photons measured in pp collisions at 13 TeV.
pQCD NLO calculations with JETPHOX of the isolated-photon cross section as a function of $p_\mathrm{T}^{\gamma}$. The calculations were obtained by choosing factorisation, normalisation, and fragmentation scales equal to the photon transverse momentum ($\mu_{f}=\mu_{R}=\mu_{F}=p_\mathrm{T}^{\gamma}$). The parton distribution function used in the calculations is NNPDF4.0, and the fragmentation function is BFG II.
Ratio of isolated-photon cross sections measured in pp collisions at $\sqrt{s}=$13 TeV over the previous ALICE measurement at $\sqrt{s}=$7 TeV.
Measurements of (anti)deuteron and (anti)$^3$He production in the rapidity range $ |y| < $ 0.5 as a function of the transverse momentum and event multiplicity in Xe$-$Xe collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The coalescence parameters $B_2$ and $B_3$ are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)$^3$He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe$-$Xe collisions and shows features similar to those already observed in Pb$-$Pb collisions, i.e., the mass ordering at low transverse momentum and the meson$-$baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe$-$Xe collisions. The extracted chemical freeze-out temperature $T_{\rm chem}$ = (154.2 $\pm$ 1.1) MeV in Xe$-$Xe collisions is similar to that observed in Pb$-$Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations.
Transverse momentum spectra of 3He nuclei measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (right panel).
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 0 to 10 percent.
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 10 to 20 percent.
First measurements of hadron(h)$-\Lambda$ azimuthal angular correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated $\Lambda$ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated $\Lambda$ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle $p_{\rm T}$ and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the $\phi(1020)$ meson are also made. The final results indicate that strangeness production in the highest multiplicity p$-$Pb collisions is enhanced relative to low multiplicity collisions in both the jet-like regions and the underlying event. The production of $\Lambda$ relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 0-20% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 20-50% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 50-80% multiplicity class p-Pb collisions
This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron ($\phi(1020)$ meson). Measuring h$-\phi$ correlations at midrapidity in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolutions of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jets are studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the h$-\phi$ correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h$-\phi$ and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the $\phi/\mathrm{h}$ ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total $\phi(1020)$ yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event.
Pet-trigger h--$\phi$ and h--h pair yields within the near and away-side jet peaks as a function of charged particle multiplicity in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV in the pseudorapidity region $|\eta|<0.8$. Pairs consist of a trigger hadron in the range $4.0 < p_{\mathrm{T, trig}} < 8.0 \mathrm{~GeV}/c$ and an associated $\phi$(1020) (h) in the range $1.5 < p_{\mathrm{T, assoc}} < 2.5 \mathrm{~GeV}/c$.
Pet-trigger h--$\phi$ and h--h pair yields within the near and away-side jet peaks as a function of charged particle multiplicity in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV in the pseudorapidity region $|\eta|<0.8$. Pairs consist of a trigger hadron in the range $4.0 < p_{\mathrm{T, trig}} < 8.0 \mathrm{~GeV}/c$ and an associated $\phi$(1020) (h) in the range $2.5 < p_{\mathrm{T, assoc}} < 4.0 \mathrm{~GeV}/c$.
Pairwise (h--$\phi$)/(h--h) ratio vs $\langle N_{\mathrm{ch}} \rangle$ for the lower associated momentum range, $1.5 < p_{\mathrm{T, assoc}} < 2.5 \mathrm{~GeV}/c$ in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV in the pseudorapidity region $|\eta|<0.8$.
The total charm-quark production cross section per unit of rapidity $\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y$, and the fragmentation fractions of charm quarks to different charm-hadron species $f(\mathrm{c}\rightarrow {\rm h_{c}})$, are measured for the first time in p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at midrapidity ($-0.96
The $p_\mathrm{T}$-integrated rapidity-differential cross sections for all measured charm-hadron species at midrapidity in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
The fragmentation fractions $f(\mathrm{c}\rightarrow\mathrm{h}_{\mathrm{c}})$ of charm hadrons in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
The total $\mathrm{c\overline{c}}$ production cross section at midrapidity in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.