Date

Measurement of kinematic and nuclear dependence of R = sigma-L / sigma-t in deep inelastic electron scattering

Dasu, S. ; deBarbaro, P. ; Bodek, A. ; et al.
Phys.Rev.D 49 (1994) 5641-5670, 1994.
Inspire Record 360765 DOI 10.17182/hepdata.22468

We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.

31 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton structure function F2 (x, Q**2) in the low x region at HERA

The H1 collaboration Abt, I. ; Ahmed, T. ; Andreev, V. ; et al.
Nucl.Phys.B 407 (1993) 515-538, 1993.
Inspire Record 357797 DOI 10.17182/hepdata.37121

A measurement of the proton structure function F 2 ( x , Q 2 ) is presented with about 1000 neutral current deep inelastic scattering events for Bjorken x in the range x ⋍ 10 −2 – 10 −4 and Q 2 > 5 GeV 2 . The measurement is based on an integrated luminosity of 22.5 nb −1 recorded by the H1 detector in the first year of HERA operation. The structure function F 2 ( x , Q 2 ) shows a significant rise with decreasing x .

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton structure function F2 in e p scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 316 (1993) 412-426, 1993.
Inspire Record 357414 DOI 10.17182/hepdata.28804

This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the photon structure function F2 (gamma) in the reaction e+ e- ---> e+ e- + hadrons at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 61 (1994) 199-208, 1994.
Inspire Record 358863 DOI 10.17182/hepdata.48474

We present measurements of the hadronic photon structure functionF2γ(x), in twoQ2 ranges with mean values of 5.9 GeV2 and 14.7 GeV2. The data were taken by the OPAL experiment at LEP, with\(\sqrt s\) close to theZ0 mass and correspond to an integratede+e− luminosity of 44.8 pb−1. In the context of a QCD-based model we find the quark transverse momentum cutoff separating the vector meson dominance (VMD) and perturbative QCD regions to be 0.27±0.10 GeV. We confirm that there is a significant pointlike component of the photon when the probe photon hasQ2>4 GeV2. Our measurements extend to lower values ofx than any previous experiment, and no increase ofF2γ(x) is observed.

2 data tables

Additional overall systematic error 5.9% not included.

Additional overall systematic error 5.9% not included.


A COMBINED ANALYSIS OF SLAC EXPERIMENTS ON DEEP INELASTIC e p AND e d SCATTERING

Whitlow, L.W. ; Bodek, A. ; Rock, Stephen ; et al.
Nucl.Phys.B Proc.Suppl. 16 (1990) 215-216, 1990.
Inspire Record 280954 DOI 10.17182/hepdata.2721

None

44 data tables

No description provided.

No description provided.

No description provided.

More…

Precision Measurement of R = $\sigma^-$l / $\sigma^- T$ and F(2) in Deep Inelastic Electron Scattering

Dasu, S. ; De Barbaro, P. ; Bodek, A. ; et al.
Phys.Rev.Lett. 61 (1988) 1061, 1988.
Inspire Record 262063 DOI 10.17182/hepdata.20079

We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.

9 data tables

2.6 pct rad length target.

2.6 pct rad length target.

2.6 pct rad length target.

More…

Measurement of the Photon Structure Function F2 (Gamma) (x, Q**2) in the Region 0.2-GeV**2 < 7-GeV**2

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Z.Phys.C 34 (1987) 1, 1987.
Inspire Record 234578 DOI 10.17182/hepdata.15803

We present a measurement of the photon structure functionF2γ in the reactionee→eeX forQ2 in the range 0.2

11 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Photon Structure Function f(2)Gamma at Q**2 from 7-GeV/c**2 to 70-GeV/c**2

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Gerhards, R. ; et al.
Z.Phys.C 31 (1986) 527, 1986.
Inspire Record 228251 DOI 10.17182/hepdata.15858

We have measured the processe+e−→e+e−+hadrons, where one of the scattered electrons was detected at large angles, withQ2 ranging from 7 to 70 (VeV/c)2. The photon structure functionF2γ(x, Q2) was determined at an averageQ2 of 23 (GeV/c)2. The measurements were compared to theoretical predictions of the Quark Parton Model and Quantum Chromodynamics. In both models a hadronic part was added. Within the errors the data are in agreement with the QPM using quark masses of 300 MeV/c2 for the light quarks. The data also agree with a QCD calculation including higher order corrections. A fit yielded a\(\Lambda _{\overline {MS} } \) value of 140−65+190 MeV, where the errors include statistical and systematic uncertainties.

1 data table

No description provided.