Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

6 data tables match query

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…

Measurement of eta eta production in two-photon collisions

The Belle collaboration Uehara, S. ; Watanabe, Y. ; Nakazawa, H. ; et al.
Phys.Rev.D 82 (2010) 114031, 2010.
Inspire Record 862260 DOI 10.17182/hepdata.56262

We report the first measurement of the differential cross section for the process gamma gamma --> eta eta in the kinematic range above the eta eta threshold, 1.096 GeV < W < 3.8 GeV over nearly the entire solid angle range, |cos theta*| <= 0.9 or <= 1.0 depending on W, where W and theta* are the energy and eta scattering angle, respectively, in the gamma gamma center-of-mass system. The results are based on a 393 fb^{-1} data sample collected with the Belle detector at the KEKB e^+ e^- collider. In the W range 1.1-2.0 GeV/c^2 we perform an analysis of resonance amplitudes for various partial waves, and at higher energy we compare the energy and the angular dependences of the cross section with predictions of theoretical models and extract contributions of the chi_{cJ} charmonia.

1 data table match query

Angular dependence of the differential cross section for the W range 1.880 to 1.920 GeV.


Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

10 data tables match query

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in minimum bias D+AU collisions versus $p_{T}$.

More…

J/psi production and nuclear effects for d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, Stephen Scott ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 012304, 2006.
Inspire Record 688457 DOI 10.17182/hepdata.57513

J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross sections and nuclear dependence of J/\psi production versus rapidity, transverse momentum, and centrality are obtained and compared to lower energy p+A results and to theoretical models. The observed nuclear dependence in d+Au collisions is found to be modest, suggesting that the absorption in the final state is weak and the shadowing of the gluon distributions is small and consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based parameterizations that fit deep-inelastic scattering and Drell-Yan data at lower energies.

3 data tables match query

Centrality dependance of the Nuclear modification factor for rapidity : y=-1.7. Centrality is represented by the number of collisions.

Centrality dependance of the Nuclear modification factor for rapidity y=0.Centrality is represented by the number of collisions.

Centrality dependance of the Nuclear modification factor for rapidity y=1.8.Centrality is represented by the number of collisions.


High-statistics study of ${\boldmath \eta \pi^0}$ production in two-photon collisions

The Belle collaboration Uehara, S. ; Watanabe, Y. ; Nakazawa, H. ; et al.
Phys.Rev.D 80 (2009) 032001, 2009.
Inspire Record 822474 DOI 10.17182/hepdata.53739

The differential cross section for the process $\gamma \gamma \to \eta \pi^0$ has been measured in the kinematic range $0.84 \GeV < W < 4.0 \GeV$, $|\cos \theta^*|<0.8$, where $W$ and $\theta^*$ are the energy and $\pi^0$ (or $\eta$) scattering angle, respectively, in the $\gamma\gamma$ center-of-mass system. The results are based on a 223 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+ e^-$ collider. Clear peaks due to the $a_0(980)$ and $a_2(1320)$ are visible. The differential cross sections are fitted in the energy region $0.9 \GeV < W < 1.46 \GeV$ to obtain the parameters of the $a_0(980)$. Its mass, width and $\Gamma_{\gamma \gamma} \B (\eta \pi^0)$ are measured to be $982.3 ^{+0.6}_{-0.7} ^{+3.1}_{-4.7} \MeV/c^2$, $75.6 \pm 1.6 ^{+17.4}_{-10.0} \MeV$ and $128 ^{+3}_{-2} ^{+502}_{-43} \eV$, respectively. The energy and angular dependences above 3.1 GeV are compared with those measured in the $\pi^0 \pi^0$ channel. The integrated cross section over $|\cos \theta^*|<0.8$ has a $W^{-n}$ dependence with $n = 10.5 \pm 1.2 \pm 0.5$, which is slightly larger than that for $\pi^0 \pi^0$. The differential cross sections show a $\sin^{-4} \theta^*$ dependence similar to $\gamma \gamma \to \pi^0 \pi^0$. The measured cross section ratio, $\sigma(\eta \pi^0)/\sigma(\pi^0 \pi^0) = 0.48 \pm 0.05 \pm 0.04$, is consistent with a QCD-based prediction.

1 data table match query

The differential cross section as a function of angle for W = 1.25 GeV.


First results of the CERES electron pair spectrometer from p + Be, P + Au and S + Au collisions

The CERES/NA45 collaboration Drees, A. ; Baur, R. ; Breskin, A. ; et al.
Nucl.Phys.A 566 (1994) 87C-94C, 1994.
Inspire Record 362492 DOI 10.17182/hepdata.8728

The CERES experiment (CErenkov Ring Electron Spectrometer) studies the production of low mass e + e − pairs in proton-proton, proton-nucleus and nucleus-nucleus interactions at the CERN SPS. The CERES spectrometer, has a novel design based on two Ring Imaging Cherenkov (RICH) counters, and it operates close to its design specifications. Data were recorded with 200 GeV u sulfur beam and 450 GeV proton beam. The analysis is in progress. We have extracted first e + − -pairs samples for p+Be, p+Au and S+Au collisions. In addition other physics topics were addressed. Inclusive photon spectra were measured in S+Au interactions. No excess over known hadronic sources was found within our present systematic error of 11%. Results on high p i charged pion spectra are presented up to 4 GeV c . We also studied the production of e + e − -pairs m the strong electromagnetic fields of very peripheral S+Pt collisions. The data are well described by a first-order perturbative QED-calculation.

1 data table match query

NON-DISRUPTIVE S+PT COLLISIONS.


Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

10 data tables match query

Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.

Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.

Non photonic electrons differential yield scaled by the number of collisions, as a function of centrality. PT belongs to 0.8-4.0 GeV/c.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

0 data tables match query

J/psi production in Au Au collisions at s(NN)**(1/2) = 200-GeV at the Relativistic Heavy Ion Collider.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 69 (2004) 014901, 2004.
Inspire Record 619646 DOI 10.17182/hepdata.57253

First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The yield of J/Psi's measured in the PHENIX experiment via electron-positron decay pairs at mid-rapidity for Au-Au reactions at sqrt(s_NN) = 200 GeV are analyzed as a function of collision centrality. For this analysis we have studied 49.3 million minimum bias Au-Au reactions. We present the J/Psi invariant yield dN/dy for peripheral and mid-central reactions. For the most central collisions where we observe no signal above background, we quote 90% confidence level upper limits. We compare these results with our J/Psi measurement from proton-proton reactions at the same energy. We find that our measurements are not consistent with models that predict strong enhancement relative to binary collision scaling.

1 data table match query

Measured differential yield of J/PSI per binary collisions,at mid rapidity, as a function of the centrality, times branching ratio Be+e-.The 90% confidence level upper limit (CLUL) for J/PSI differential yield is also given. The values of the number of participants for each centrality bins are calculated for general information.


Inclusive charged particle cross-sections in photoproduction at HERA

The H1 collaboration Abt, I. ; Ahmed, T. ; Andreev, V. ; et al.
Phys.Lett.B 328 (1994) 176-186, 1994.
Inspire Record 372256 DOI 10.17182/hepdata.45105

Cross sections are presented for the inclusive production of charged particles measured in electron-proton collisions at low Q 2 with the H1 detector at HERA. The transverse momentum distribution extends up to 8 GeV/ c . Its shape is found to be harder than that observed in p p collisions at comparable centre-of-mass energies √S γp ≈ √S p p ≈ 200 GeV , and also harder than in γp collisions at lower energies √ S γp ≈ 18 GeV. Results from quantum chromodynamics (QCD) calculations agree with the measured transverse momentum and pseudorapidity cross sections.

0 data tables match query