Correlations between target fragments were measured in α- and 14 N-induced reactions at 70, 250 and 800 MeV/u incident energies. The reaction mechanism is characterized by the linear momentum transfer and the excitation energy which were deduced from the kinematics and the mass distribution of the fission fragments. By selecting targets lighter than Th (Au and Ho) the yield from peripheral collisions is reduced by the increase in the fission barrier thus allowing events with the highest linear momentum transfer and excitation energy to be favoured. The results show that up to an incident energy of 800 MeV/u hot nuclei are formed which decay via normal binary fission. The linear momentum transfer is essentially constant over the covered energy range, but the excitation energy increases until the total incident energy is greater than 3 GeV. At this energy, independent of the projectile mass the fission probability of the heavy nuclei drops below 50%, while the emission of intermediate-mass fragments increases. The relative velocities between two intermediate-mass fragments exceed strongly the values of binary fission. Monte Carlo calculations show that the relative velocities between these fragments exclude a sequential emission from the recoil nucleus and support a simultaneous breakup mechanism.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
The analyzing power for elastic pd scattering at 3.5 GeV has been measured in the region 0.1⩽−t⩽1.5 (GeV/ c ) 2 , using the polarized proton beam at KEK. The angular distribution shows a behavior similar to that in the lower energy region. It is reproduced fairly well by the predictions of a multiple scattering model based on the Glauber theory.
No description provided.
A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.
No description provided.
No description provided.
No description provided.
The total cross section for e + e − annihilation into hadrons has been measured for CM energies ranging from 50 to 57 GeV. We fit the predictions of the standard model to these measurements and those at lower energies. The mass of the Z 0 boson, M Z , and the QCD scale parameter, Λ MS , are derived from the fit. The results are M Z =88.6 −1.8 +2.0 GeV/ c 2 , and Λ MS =0.15 −0.11 +0.16 GeV .
No description provided.
We present results on a high statistics study of the proton structure functions F 2 ( x , Q 2 ) and R = σ L / σ T measured in deep inelastic scattering of muons on a hydrogen target. The analysis is based on 1.8 × 10 6 events after all cuts, recorded at beam energies of 100, 120, 200 and 280 GeV and covering a kinematic range 0.06 ⩽ x ⩽ 0.80 and 7 GeV 2 ⩽ Q 2 ⩽260 GeV 2 . At small x , we find R to be different from zero in agreement with predictions of perturbative QCD.
THE AVERAGE VALUES OF Q**2 AT EACH OF THE X VALUES LISTED IN THIS TABLE ARE 15,20,20,25,30,35,40,45,50,50.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.
The production of neutral pions by the interaction of 200A·GeV p and16O projectiles with a Au target has been studied in the pseudorapidity range 1.5≦η≦2.1. Transverse momentum spectra have been measured between 0.4 GeV/c and 3.6 GeV/c and their dependence on the centrality of the collision has been investigated. The peripheral-collision spectra display a marked change of slope with a hard component starting at about 1.8 GeV/c, in contrast to central-collision data. The data are discussed in comparison to p+p and α+α data from the ISR.
Data obtained with minimum bias trigger conditions.
Data obtained with minimum bias trigger conditions.
Data for central collisions.
We have measured the inclusive production of γ, π0 and η ine+e− annihilation at the center of mass energy of 35 GeV. The differential cross sections, extended to the kinematical limit and measured with high accuracy, are found to be in good agreement with previously reported results. Using the measured spectra we determine the average multiplicity for each of these particle species.
No description provided.
Statistical errors only.
Statistical errors only.
The production of neutral strange particlesKso, Λ and\(\bar \Lambda \) has been studied in 60 and 200 GeV per nucleon OAu and pAu collisions with the streamer chamber vertex spectrometer of the NA35 experiment at the CERN-SPS accelerator. Ratios of neutral strange particle production to negatively charged particle production in selected regions of phase space were measured to be the same in OAu and pAu reactions. The rates of strange particle production in central OAu collisions are about a factor of 16 higher than in pAu collisions when compared in the same regions of phase space. If an enhancement of strange particle production in OAu collisions relative to pAu collisions is considered to be a signature for quark-gluon plasma formation, no evidence supporting it is observed. The experimental results are compared to the Lund FRITIOF model.
No description provided.
No description provided.
No description provided.
The p¯4He annihilation cross section averaged over the interval 40–50 MeV/ c has been measured using a streamer chamber in a magnetic field. The measured value is 1342±250 mb. It agrees with a behaviour like 1/ p of the annihilation cross section. Our result has been obtained at the lowest momentum achieved till now in measurements of antiproton annihilation in flight.
No description provided.
We present the results of a study of muon pairs with invariant masses greater than 4.05 GeV/c2 produced in high-energy pion-nucleon interactions. The production cross section together with the inferred pion and nucleon structure functions are reported and compared with other experiments and with QCD predictions. The transverse-momentum distributions are also presented. Finally, the full angular distribution in cosθ and φ is given as a function of mass, Feynman x, and transverse momentum. Longitudinal photon polarization is seen in the lower portion of the mass range at high xπ. This result is compared with a higher-twist model.
No description provided.
No description provided.
No description provided.