Differential cross sections and polarizations are presented for the reactions K − p → Λπ 0 , Λη , Λη ′ at 8.25 GeV/ c incident K − momentum. The data, which come from a high statistics experiment in the CERN 2 m bubble chamber, are compared with previous experimental results on the same reactions and with current theoretical ideas.
No description provided.
No description provided.
No description provided.
Cross-section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K − p and π + p interactions at 10 and 16 GeV/ c . The 16 GeV/ c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases.
No description provided.
We present data on K − p reactions leading to the final states K 0 n , π 0 Λ, ηΛ, η'Λ, π − Σ + , K 0 Δ 0 (1230), and π − Σ + (1385) from a bubble chamber experiment at 14.3 GeV/ c K − lab momentum. Total and differential cross sections, Λ and Σ ∓ polarisations in π 0 Λ and π − Σ + final states as well as the Σ + (1385) density matrix elements are given.
NORMALIZED TO A TOTAL CROSS SECTION OF 21.5 +- 0.2 MB (GALBRAITH ET AL, PR 138B, 913 (1965)).
No description provided.
No description provided.
None
No description provided.
No description provided.
AVERAGED OVER ALL PRODUCTION ANGLES.
Lambda production is studied in K − p interactions at 10.1 GeV/ c , where the dominant reaction is K − p → Λ + pions. General characteristics such as the distributions of the double differential cross section in the lab system, of the variable x = p L ∗ p max ∗ , of p ⊥ 2 and of the missing mass to the lambda are presented. Total cross sections for Λ production and for the various channels are given. Differential cross sections d σ d t , d σ d t′ and d σ d u′ are presented. Forward and backward peaks are observed in the d σ d t′ and d σ d u′ distributions, respectively. It is found that the exponential slope of these distributions decreases with increasing missing mass to the lambda and, for d σ d t′ , also for increasing multiplicity in the final state. The polarization of the lambdas is studied as a function of multiplicity, p L ∗ , (Λπ ± ) effective mass, t ′ and u ′. The forward lambdas show
No description provided.
POSSIBLE FORWARD DIP.