Measurement of the Z$γ$ production cross section and search for anomalous neutral triple gauge couplings in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-009, 2026.
Inspire Record 3109635 DOI 10.17182/hepdata.167736

A measurement of the fiducial cross section of the associated production of a Z boson and a high-$p_\mathrm{T}$ photon, where the Z decays to two neutrinos, and a search for anomalous triple gauge couplings are reported. The results are based on data collected by the CMS experiment at the LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV during 2016$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The fiducial Z$γ$ cross section, where a photon with a $p_\mathrm{T}$ greater than 225 GeV is produced in association with a Z, and the Z decays to a $ν\barν$ pair (Z($ν\barν$)$γ$), is measured to be 23.3$^{+1.4}_{-1.3}$ fb, in agreement, within uncertainties, with the standard model prediction. The differential cross section as a function of the photon $p_\mathrm{T}$ has been measured and compared with standard model predictions computed at next-to-leading and at next-to-next-to-leading order in perturbative quantum chromodynamics. Constraints have been placed on the presence of anomalous couplings that affect the ZZ$γ$ and Z$γγ$ vertex using the $p_\mathrm{T}$ spectrum of the photons. The observed 95% confidence level intervals for $CP$-conserving $h_3^γ$ and $h_4^γ$ are determined to be ($-$3.4, 3.5) $\times$ 10$^{-4}$ and ($-$6.8, 6.8) $\times$ 10$^{-7}$, and for $h_3^\mathrm{Z}$ and $h_4^\mathrm{Z}$ they are ($-$2.2, 2.2) $\times$ 10$^{-4}$ and ($-$4.1, 4.2) $\times$ 10$^{-7}$, respectively. These are the strictest limits to date on $h_3^γ$, $h_3^\mathrm{Z}$ and $h_4^\mathrm{Z}$.

5 data tables

Post-fit reconstruction-level photon transverse momentum $p_{T}^{\gamma}$ distribution in the ECAL barrel signal region. The yields correspond to the post-fit expectation from the maximum-likelihood fit used in the analysis, with uncertainties reflecting the post-fit total (stat+syst) uncertainty per bin. Data correspond to the full Run-2 dataset (138 fb$^{-1}$ at $\sqrt{s}=13$ TeV).

Post-fit reconstruction-level photon transverse momentum $p_{T}^{\gamma}$ distribution in the ECAL endcaps signal region. The yields correspond to the post-fit expectation from the maximum-likelihood fit used in the analysis, with uncertainties reflecting the post-fit total (stat+syst) uncertainty per bin. Data correspond to the full Run-2 dataset (138 fb$^{-1}$ at $\sqrt{s}=13$ TeV).

Measured and predicted fiducial cross sections (fb) in the EB, EE, and combined phase space. The fiducial phase space definition follows the analysis selection in the paper. Predictions are shown at NLO (MADGRAPH5_aMC@NLO) and NNLO (MATRIX).

More…

Differential cross-section measurements for the electroweak production of dijets in association with a $Z$ boson in proton-proton collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 163, 2021.
Inspire Record 1803608 DOI 10.17182/hepdata.94218

Differential cross-section measurements are presented for the electroweak production of two jets in association with a $Z$ boson. These measurements are sensitive to the vector-boson fusion production mechanism and provide a fundamental test of the gauge structure of the Standard Model. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}$=13 TeV and with an integrated luminosity of 139 fb$^{-1}$. The differential cross-sections are measured in the $Z\rightarrow \ell^+\ell^-$ decay channel ($\ell=e,\mu$) as a function of four observables: the dijet invariant mass, the rapidity interval spanned by the two jets, the signed azimuthal angle between the two jets, and the transverse momentum of the dilepton pair. The data are corrected for the effects of detector inefficiency and resolution and are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa 2.2. The differential cross-sections are used to search for anomalous weak-boson self-interactions using a dimension-six effective field theory. The differential cross-section as a function of the signed azimuthal angle between the two jets is found to be particularly sensitive to the interference between the Standard Model and dimension-six scattering amplitudes and provides a direct test of charge-conjugation and parity invariance in the weak-boson self-interactions.

21 data tables

Differential cross-sections for EW $Zjj$ production as a function of $m_{jj}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

Differential cross-sections for EW $Zjj$ production as a function of $|\Delta y_{jj}|$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

Differential cross-sections for EW $Zjj$ production as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

More…

Measurement of the WZ production cross section in pp collisions at sqrt{s} = 7 and 8 TeV and search for anomalous triple gauge couplings at sqrt{s} = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 236, 2017.
Inspire Record 1487288 DOI 10.17182/hepdata.89400

The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9 inverse femtobarns collected at sqrt(s)= 7 TeV, and 19.6 inverse femtobarns at sqrt(s)= 8 TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for 71 < m[Z] < 111 GeV are sigma(pp to WZ; sqrt(s)= 7 TeV) = 20.14 +/- 1.32 (stat) +/- 1.13 (syst) +/- 0.44 (lumi) pb and sigma(pp to WZ; sqrt(s)= 8 TeV) = 24.09 +/- 0.87 (stat) +/- 1.62 (syst) +/- 0.63 (lumi) pb. Differential cross sections with respect to the Z boson pt, the leading jet pt, and the number of jets are obtained using the sqrt(s)= 8 TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.

5 data tables

The measured WZ cross section for 71 < mZ < 111 GeV using 7 TeV data. The theory uncertainty only includes QCD scales variations.

The measured WZ cross section for 71 < mZ < 111 GeV using 8 TeV data. The theory uncertainty only includes QCD scales variations.

Differential cross section as function of the Z boson transverse momentum.

More…