Three structures, X(6600), X(6900), and X(7100), have emerged from the J$/ψ\,$J$/ψ$ (J$/ψ$\to$μ^+μ^-$) mass spectrum. These are candidates of all-charm tetraquarks, an exotic form of hadronic matter. A clearer picture of these states is obtained using proton-proton collision data collected by the CMS detector that corresponds to 315 fb$^{-1}$, which yields 3.6 times more J$/ψ\,$J$/ψ$ pairs than previous studies by CMS. All three structures, and their mutual interference, have statistical significances above five standard deviations. The presence of interference implies that the structures have common quantum numbers. Their squared masses align linearly with a resonance index and have natural widths that systematically decrease as the index increases. These features are consistent with radial excitations of tetraquarks composed of two aligned spin-1 diquarks without orbital excitation, and disfavor other interpretations. The J$/ψ\,$$ψ$(2S) $\to$$μ^+μ^-μ^+μ^-$ decay mode is also explored and the X(6900) and X(7100) states are found with significances exceeding 8 and 4 standard deviations, respectively.
Measured masses and widths of the three X states from the fits to the $\mathrm{J}/\psi\mathrm{J}/\psi$ mass spectrum from the Run 2+3 data sets. The amplitudes (phases) of the X(6600) and X(7100) relative to the X(6900) state are r1 = 1.790 ± 0.737 (phi1 = 1.693 ± 0.660 rad) and r3 = 0.429 ± 0.267 (phi3 = -0.388 ± 0.410 rad), respectively.
Measured masses and widths of the three X states from the fits to the $\mathrm{J}/\psi \psi(2S)$ mass spectrum from the Run 2+3 data sets.The amplitudes (phases) of the X(7100) relative to the X(6900) state are r = 0.692 ± 0.225 (phi1 = -1.486 ± 0.970 rad).
The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant-mass spectrum covering the full range of the fit: 6.175 - 15.0 GeV.
The observation of associated production of an $Υ$(1S) meson with a Z boson and a measurement of the ratio of its fiducial cross section to the fiducial cross section of the Z boson are presented. Both the $Υ$(1S) meson and the Z boson are identified via decays into a pair of opposite-sign muons. The analysis is based on proton-proton (pp) collision data at $\sqrt{s}$ = 13 TeV, collected with the CMS detector in 2016$-$2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. Using the production of the Z boson decaying into four muons as a normalization channel, the ratio of the fiducial cross sections $σ$(pp $\to$ Z $+$$Υ$(1S))$\mathcal{B}$(Z $\to$$μ^+μ^-$)$\mathcal{B}$($Υ$(1S) $\to$$μ^+μ^-$ ) to $σ$(pp $\to$ Z)$\mathcal{B}$(Z $\to$ 4$μ$) is measured to be $\mathcal{R}_{\mathrm{Z+Υ}\mathrm{(1S)}}$ = (21.1 $\pm$ 55 (stat) $\pm$ 0.6 (syst) $\times$ 10$^{-3}$), where stat and syst denote the statistical and systematic uncertainties, respectively. The result is used to extract the effective double-parton scattering cross section $σ_\text{eff}$ = 13.0$^{+7.7}_{-3.4}$. In addition, for the first time, $σ_\text{eff}$ is measured in bins of the transverse momentum of the $Υ$(1S) meson or of the Z boson.
$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$
DPS $\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$
$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$
The production cross sections of the $Υ$(1S), $Υ$(2S), and $Υ$(3S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV, using a data sample collected in 2022 by the CMS experiment and corresponding to an integrated luminosity of 37.4 fb$^{-1}$. The measurement is performed in the $μ^+μ^-$ decay channels, differentially as a function of transverse momentum in the 20$-$200 GeV range, in the $\lvert y\rvert$$\lt$ 0.6 and 0.6 $\lt$$\lvert y\rvert$$\lt$ 1.2 rapidity intervals.
Differential cross section times branching fraction for Upsilon(1S) -> mu+ mu-, measured in the rapidity range |y| < 0.6. This table corresponds to Figure 2 (left panel for |y|<0.6, right panel for 0.6<|y|<1.2) and Table A.1 in the paper. Results assume unpolarized production; polarization correction factors are provided in Table 6.
Differential cross section times branching fraction for Upsilon(1S) -> mu+ mu-, measured in the rapidity range 0.6 < |y| < 1.2. This table corresponds to Figure 2 (left panel for |y|<0.6, right panel for 0.6<|y|<1.2) and Table A.1 in the paper. Results assume unpolarized production; polarization correction factors are provided in Table 6.
Differential cross section times branching fraction for Upsilon(2S) -> mu+ mu-, measured in the rapidity range |y| < 0.6. This table corresponds to Figure 2 (left panel for |y|<0.6, right panel for 0.6<|y|<1.2) and Table A.2 in the paper. Results assume unpolarized production; polarization correction factors are provided in Table 6.
A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H $\to$$\mathrm{c\bar{c}}$, produced in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}$H) is presented. The search is performed with data from proton-proton collisions at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Advanced machine learning techniques are employed for jet flavor identification and event classification. The Higgs boson decay to a bottom quark-antiquark pair is measured simultaneously and the observed $\mathrm{t\bar{t}}$H (H $\to$$\mathrm{b\bar{b}}$) event rate relative to the standard model expectation is 0.91 $^{+0.26}_{-0.22}$. The observed (expected) upper limit on the product of production cross section and branching fraction $σ$($\mathrm{t\bar{t}}$H) $\mathcal{B}$(H $\to$$\mathrm{c\bar{c}}$) is 0.11 (0.13) pb at 95% confidence level, corresponding to 7.8 (8.7) times the standard model prediction. When combined with the previous search for H $\to$ $\mathrm{c\bar{c}}$ via associated production with a W or Z boson, the observed (expected) 95% confidence interval on the Higgs-charm Yukawa coupling modifier, $κ_\mathrm{c}$, is $\lvert{κ_\mathrm{c}}\rvert$ $\lt$ 3.5 (2.7), the most stringent constraint to date.
Upper limits on the signal strength for $\text{H}\to\text{c}\overline{\text{c}}$ decays with respect to the standard model expectation of unity.
Upper limits on the signal strength for $\text{t}\overline{\text{t}}\text{H}(\text{H}\to\text{c}\overline{\text{c}})$ decays with respect to the standard model expectation of unity.
Signal strength and significance for $\text{t}\overline{\text{t}}\text{H}(\text{H}\to\text{b}\overline{\text{b}})$ decays with respect to the standard model expectation of unity.
The $pp \to W^{\pm} (\to μ^{\pm} ν_μ) X$ cross-sections are measured at a proton-proton centre-of-mass energy $\sqrt{s} = 5.02$ TeV using a dataset corresponding to an integrated luminosity of 100 pb$^{-1}$ recorded by the LHCb experiment. Considering muons in the pseudorapidity range $2.2 < η< 4.4$, the cross-sections are measured differentially in twelve intervals of muon transverse momentum between $28 < p_\mathrm{T} < 52$ GeV. Integrated over $p_\mathrm{T}$, the measured cross-sections are \begin{align*} σ_{W^+ \to μ^+ ν_μ} &= 300.9 \pm 2.4 \pm 3.8 \pm 6.0~\text{pb}, \\ σ_{W^- \to μ^- \barν_μ} &= 236.9 \pm 2.1 \pm 2.7 \pm 4.7~\text{pb}, \end{align*} where the first uncertainties are statistical, the second are systematic, and the third are associated with the luminosity calibration. These integrated results are consistent with theoretical predictions. This analysis introduces a new method to determine the $W$-boson mass using the measured differential cross-sections corrected for detector effects. The measurement is performed on this statistically limited dataset as a proof of principle and yields \begin{align*} m_W = 80369 \pm 130 \pm 33~\text{MeV}, \end{align*} where the first uncertainty is experimental and the second is theoretical.
The measured differential cross sections ($d\sigma/dp_T$) for $W^+$. The first systematic uncertainty is statistical and the second is systematic.
The measured differential cross sections ($d\sigma/dp_T$) for $W^-$. The first systematic uncertainty is statistical and the second is systematic.
The correlation matrix corresponding to the statistical uncertainties on the differential cross-section ($d\sigma/dp_T$) fit results for $W^+$. To combine with $W^-$, use the rows and columns ordered as $W^+$ and then $W^-$. Assume no correlation in the statistical uncertainties between $W^+$ and $W^-$ (zero entries in the off-diagonal blocks).
Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+}) - m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0}) - m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s}) - m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.
The measured mass differences between vector and ground B meson states.
Extracted masses of $\mathrm{B}^{*+}$, $\mathrm{B}^{*0}$, and $\mathrm{B}^{*0}_{\mathrm{s}}$ mesons. The values are obtained using the measurements in Table 1 and the ground state masses from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
Extracted mass differences between vector B meson states of different flavour. The values are obtained using the measurements in Table 4 and the ground state mass differences from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.
Summary of the limits obtained for the Wilson coefficients.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are fixed to zero.
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. Here we show that the quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC} = 2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Summary of statistical tests.
Results from hypothesis test for pairs of spin-parity models.
The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.
Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.
Measured fiducial cross-section compared with theoretical predictions from MiNNLO+Pythia8, Geneva+Pythia8, Sherpa2.2.12, and MATRIX2.1. The predictions are based on the NNPDF3.0 (red squares) and NNPDF3.1 luxQED (blue dots) PDF sets. The nNNLO predictions include photon-induced contributions (always using NNPDF3.1 luxQED) and NLO QCD corrections to the gluon-gluon initial state. The $q\bar{q}\rightarrow WW$ predictions from MiNNLO, Geneva, and Sherpa2.2.12 are combined with a Sherpa2.2.2 prediction of gluon-induced production, scaled by an inclusive NLO K-factor of 1.7. Inner (outer) error bars on the theory predictions correspond to PDF (the combination of scale and PDF) uncertainties. The MATRIX nNNLO QCD $\otimes$ NLO EW prediction using NNPDF3.1 luxQED, the best available prediction of the integrated fiducial cross-section, is in good agreement with the measurement.
Fiducial differential cross-sections as a function of $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$. The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The right-hand-side axis indicates the integrated cross-section of the rightmost bin. The results are compared to fixed-order nNNLO QCD + NLO EW predictions of Matrix 2.1, with the NNLO + PS predictions from Powheg MiNNLO + Pythia8 and Geneva + Pythia8, as well as Sherpa2.2.12 NLO + PS predictions. The last three predictions are combined with Sherpa 2.2.2 for the $gg$ initial state and Sherpa 2.2.12 for electroweak $WWjj$ production. These contributions are modelled at LO but a NLO QCD $k$-factor of 1.7 is applied for gluon induced production. Theoretical predictions are indicated as markers with vertical lines denoting PDF, scale and parton shower uncertainties. Markers are staggered for better visibility.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acceptance) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acceptance) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acceptance) nb for the Z boson production in the dimuon mass range of 60$-$120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.