Observation of $Υ$(1S) + Z associated production and measurement of the effective double-parton scattering cross section in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-23-007, 2026.
Inspire Record 3115234 DOI 10.17182/hepdata.159753

The observation of associated production of an $Υ$(1S) meson with a Z boson and a measurement of the ratio of its fiducial cross section to the fiducial cross section of the Z boson are presented. Both the $Υ$(1S) meson and the Z boson are identified via decays into a pair of opposite-sign muons. The analysis is based on proton-proton (pp) collision data at $\sqrt{s}$ = 13 TeV, collected with the CMS detector in 2016$-$2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. Using the production of the Z boson decaying into four muons as a normalization channel, the ratio of the fiducial cross sections $σ$(pp $\to$ Z $+$$Υ$(1S))$\mathcal{B}$(Z $\to$$μ^+μ^-$)$\mathcal{B}$($Υ$(1S) $\to$$μ^+μ^-$ ) to $σ$(pp $\to$ Z)$\mathcal{B}$(Z $\to$ 4$μ$) is measured to be $\mathcal{R}_{\mathrm{Z+Υ}\mathrm{(1S)}}$ = (21.1 $\pm$ 55 (stat) $\pm$ 0.6 (syst) $\times$ 10$^{-3}$), where stat and syst denote the statistical and systematic uncertainties, respectively. The result is used to extract the effective double-parton scattering cross section $σ_\text{eff}$ = 13.0$^{+7.7}_{-3.4}$. In addition, for the first time, $σ_\text{eff}$ is measured in bins of the transverse momentum of the $Υ$(1S) meson or of the Z boson.

9 data tables

$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

DPS $\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

More…