Showing 10 of 637 results
The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Pb+Pb 5.02 TeV
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Xe+Xe 5.44 TeV
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>EWK SR distributions:</b> <a href="116034?version=1&table=Figure 11a">SR-High_8-EWK</a>; <a href="116034?version=1&table=Figure 11b">SR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 11c">SR-Int-EWK</a>; <a href="116034?version=1&table=Figure 11d">SR-Low-EWK</a>; <a href="116034?version=1&table=Figure 11e">SR-OffShell-EWK</a><br/><br/> <b>Strong SR distributions:</b> <a href="116034?version=1&table=Figure 13a">SRC-STR</a>; <a href="116034?version=1&table=Figure 13b">SRLow-STR</a>; <a href="116034?version=1&table=Figure 13c">SRMed-STR</a>; <a href="116034?version=1&table=Figure 13d">SRHigh-STR</a><br/><br/> <b>RJR SR Yields:</b> <a href="116034?version=1&table=Table 16">SR2l-Low-RJR, SR2l-ISR-RJR</a><br/><br/> <b>EWK SR Yields:</b> <a href="116034?version=1&table=Table 18">SR-High_16a-EWK, SR-High_8a-EWK, SR-1J-High-EWK, SR-ℓℓ𝑏𝑏-EWK, SR-High_16b-EWK, SR-High_8b-EWK</a>; <a href="116034?version=1&table=Table 19">SR-Int_a-EWK, SR-Low_a-EWK, SR-Low-2-EWK, SR-OffShell_a-EWK, SR-Int_b-EWK, SR-Low_b-EWK, SR-OffShell_b-EWK </a><br/><br/> <b>Strong SR Yields:</b> <a href="116034?version=1&table=Table 21">SRC-STR, SRLow-STR, SRMed-STR, SRHigh-STR</a>; <a href="116034?version=1&table=Table 22">SRZLow-STR, SRZMed-STR, SRZHigh-STR</a><br/><br/> <b>C1N2 Model Limits:</b> <a href="116034?version=1&table=Table 15a C1N2 Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15a C1N2 Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34a C1N2 Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>GMSB Model Limits:</b> <a href="116034?version=1&table=Table 15b GMSB Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15b GMSB Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34b GMSB Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Slepton Model Limits:</b> <a href="116034?version=1&table=Figure 16a Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16a Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23a XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16b Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16b Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23b XS Upper Limit">Upper Limits</a><br/><br/> <b>Squark-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16c Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16c Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23c XS Upper Limit">Upper Limits</a><br/><br/> <b>EWK VR distributions:</b> <a href="116034?version=1&table=Figure 4a S_ETmiss in VR-High-Sideband-EWK">VR-High-Sideband-EWK</a>; <a href="116034?version=1&table=Figure 4b S_Etmiss in VR-High-R-EWK">VR-High-R-EWK</a>; <a href="116034?version=1&table=Figure 4c S_Etmiss in VR-1J-High-EWK">VR-1J-High-EWK</a>; <a href="116034?version=1&table=Figure 4d S_Etmiss in VR-llbb-EWK">VR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 5a S_Etmiss in VR-Int-EWK">VR-Int-EWK</a>; <a href="116034?version=1&table=Figure 5b S_Etmiss in VR-Low-EWK">VR-Low-EWK</a>; <a href="116034?version=1&table=Figure 5c S_Etmiss in VR-Low-2-EWK">VR-Low-2-EWK</a>; <a href="116034?version=1&table=Figure 5d S_Etmiss in VR-OffShell-EWK">VR-OffShell-EWK</a><br/><br/> <b>Strong VR distributions:</b> <a href="116034?version=1&table=Figure 6a">VRC-STR</a>; <a href="116034?version=1&table=Figure 6b">VRLow-STR</a>; <a href="116034?version=1&table=Figure 6c">VRMed-STR</a>; <a href="116034?version=1&table=Figure 6d">VRHigh-STR</a>; <a href="116034?version=1&table=Figure 8">VR3L-STR</a><br/><br/> <b>Other Strong distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 17a">SRLow-STR + VRLow-STR</a><br/><br/> <b>Other EWK distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 33a Mjj in CR-Z-EWK and SR-Low-EWK">CR-Z-EWK + SR-Low-EWK</a>; <a href="116034?version=1&table=Auxiliary Figure 33b S_ETmiss in CR-Z-met-EWK">CR-Z-met-EWK</a><br/><br/> <b>Strong Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 30-31 SRC-STR Cutflow">SRC-STR GG_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRMed-STR Cutflow">SRC-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRLow-STR Cutflow">SRLow-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRHigh-STR Cutflow">SRC-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZLow-STR Cutflow">SRZLow-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZMed-STR Cutflow">SRZMed-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZHigh-STR Cutflow">SRZHigh-STR SS_N2_ZN1</a><br/><br/> <b>EWK Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Cutflow"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Cutflow"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Cutflow"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Cutflow"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Cutflow"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Cutflow"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Cutflow"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Cutflow"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Cutflow"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Cutflow"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Cutflow"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Cutflow"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Cutflow"> SR-llbb-EWK</a><br/><br/> <b>EWK Signal Number of MC Events:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Generated"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Generated"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Generated"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Generated"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Generated"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Generated"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Generated"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Generated"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Generated"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Generated"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Generated"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Generated"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Generated"> SR-llbb-EWK</a><br/><br/> <b>SRC-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SRC-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SR-OffShell_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in C1N2 acc in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in C1N2 acc in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in C1N2 eff in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in C1N2 eff in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>Truth Code snippets</b>, <b>SLHA files</b>, and <b>PYHF json likelihoods</b> are available under "Resources" (purple button on the left) ---- Record created with hepdata_lib 0.7.0: https://zenodo.org/record/4946277 and PYHF: https://doi.org/10.5281/zenodo.1169739
Breakdown of expected and observed yields in the two recursive-jigsaw reconstruction signal regions after a simultaneous fit of the the CRs. The two sets of regions are fit separately. The uncertainties include both statistical and systematic sources.
Breakdown of expected and observed yields in the electroweak search High and $\ell\ell bb$ signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the electroweak search Int, Low, and OffShell signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the four edge signal regions, integrated over the $m_{\ell\ell}$ distribution after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Breakdown of expected and observed yields in the three on-$Z$ signal regions after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected dilepton mass distributions in VR3L-STR without a fit to the data. The 'Other' category includes the negligible contributions from $t\bar{t}$ and $Z/\gamma^*$+jets processes. The hatched band contains the statistical uncertainty and the theoretical systematic uncertainties of the $WZ$/$ZZ$ prediction, which are the dominant sources of uncertainty. No fit is performed. The last bin contains the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95\% CLs upper limit on the cross section.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95$\%$ CLs upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
The combined $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution of VRLow-STR and SRLow-STR (left), and the same region with the $\Delta\phi(\boldsymbol{j}_{1,2},\boldsymbol{\mathit{p}}_{ ext{T}}^{ ext{miss}})<0.4$ requirement, used as a control region to normalize the $Z/\gamma^*+\mathrm{jets}$ process (right). Separate fits for the SR and VR are performed, as for the results in the paper, and the resulting distributions are merged. All statistical and systematic uncertainties are included in the hatched bands. The last bins contain the overflow.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
A search for a long-lived, heavy neutral lepton ($\mathcal{N}$) in 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS detector at the Large Hadron Collider is reported. The $\mathcal{N}$ is produced via $W \rightarrow \mathcal{N} \mu$ or $W \rightarrow \mathcal{N} e$ and decays into two charged leptons and a neutrino, forming a displaced vertex. The $\mathcal{N}$ mass is used to discriminate between signal and background. No signal is observed, and limits are set on the squared mixing parameters of the $\mathcal{N}$ with the left-handed neutrino states for the $\mathcal{N}$ mass range $3$ GeV $< m_{\mathcal{N}} < 15$ GeV. For the first time, limits are given for both single-flavor and multiflavor mixing scenarios motivated by neutrino flavor oscillation results for both the normal and inverted neutrino-mass hierarchies.
Expected and observed 95% CL for the 1SFH e Dirac model.
Expected and observed 95% CL for the 1SFH e Majorana model.
Expected and observed 95% CL for the 1SFH mu Dirac model.
Expected and observed 95% CL for the 1SFH mu Majorana model.
Expected and observed 95% CL for the 2QDH NH Dirac model.
Expected and observed 95% CL for the 2QDH NH Majorana model.
Expected and observed 95% CL for the 2QDH IH Dirac model.
Expected and observed 95% CL for the 2QDH IH Majorana model.
Cutflow for six simulated signal channels showing the weighted number of expected events based on the single-flavour mixing model in the Majorana limit. Each column uses the generated signal sample with the mass hypothesis $m_N = 10$ GeV and proper decay length $c\tau_N = 10$ mm.
Cutflow for the six channels in data showing the number of events passing each successive signal selection for Majorana HNLs.
The event selection efficiency for each mass-lifetime point in all six studied channels. Shown is the fraction of the produced MC simulation events that pass all signal region selections. An entry of 0 indicates no events were selected.
The dominant signal uncertainty is due to differences in reconstruction of displaced vertices and tracks between data and MC. This is evaluated by comparing $K^{0}_{S} \rightarrow \pi^+\pi^-$ event yields in the VR and in MC produced with Pythia8.186 in bins of $p_\mathrm{T}$ and $r_\mathrm{DV}$. The data/MC ratio is normalized to the bin nearest the IP where the tracking and vertexing reconstruction algorithms are expected to be most robust. The symmetrized difference from 1.0 is applied to each signal vertex as a per-event systematic variation.
Expected and observed yields in the different analysis regions (prefit) for the 1SFH e Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH e Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH e Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH e Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH u Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH u Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH u Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH u Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (NH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (NH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (NH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (NH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (IH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (IH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (IH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (IH) Majorana model (10 GeV, 10mm).
The total displaced vertexing efficiency as a function of $r_{DV}$ for the custom configuration used in this analysis. The definition of the secondary vertex efficiency can be found in defined in \cite{ATL-PHYS-PUB-2019-013}. The efficiency is shown for $\mu-\mu\mu$, $\mu-\mu e$ and $\mu-ee$ signals with $m_N=10$~GeV and $c\tau_N=10$~mm.
A study of $B_c^+\to J/\psi D_s^+$ and $B_c^+\to J/\psi D_s^{*+}$ decays using 139 fb$^{-1}$ of integrated luminosity collected with the ATLAS detector from $\sqrt{s} = 13$ TeV $pp$ collisions at the LHC is presented. The ratios of the branching fractions of the two decays to the branching fraction of the $B_c^+\to J/\psi \pi^+$ decay are measured: $\mathcal B(B_c^+\to J/\psi D_s^+)/\mathcal B(B_c^+\to J/\psi \pi^+) = 2.76\pm 0.47$ and $\mathcal B(B_c^+\to J/\psi D_s^{*+})/\mathcal B(B_c^+\to J/\psi \pi^+) = 5.33\pm 0.96$. The ratio of the branching fractions of the two decays is found to be $\mathcal B(B_c^+\to J/\psi D_s^{*+})/\mathcal B(B_c^+\to J/\psi D_s^+) = 1.93\pm0.26$. For the $B_c^+\to J/\psi D_s^{*+}$ decay, the transverse polarization fraction, $\Gamma_{\pm\pm}/\Gamma$, is measured to be $0.70\pm0.11$. The reported uncertainties include both the statistical and systematic components added in quadrature. The precision of the measurements exceeds that in all previous studies of these decays. These results supersede those obtained in the earlier ATLAS study of the same decays with $\sqrt{s} = 7$ and 8 TeV $pp$ collision data. A comparison with available theoretical predictions for the measured quantities is presented.
Measured values of $R_{D_s^+/\pi^+}$, $R_{D_s^{*+}/\pi^+}$, $R_{D_s^{*+}/D_s^+}$ ratios of branching fractions, fraction of transverse polarization $\Gamma_{\pm\pm}/\Gamma$ with their statistical uncertainties and full breakdown of systematic uncertainties. Predictions of various theory calculations are also shown with their uncertainties where available, as well as the estimates based on similar decays of light $B$ mesons.
Parameters of the $B_c^+\to J/\psi D_s^+$ and $B_c^+\to J/\psi D_s^{*+}$ signals obtained with the unbinned extended maximum-likelihood fit to the data. Only the statistical uncertainties are included. No acceptance or efficiency corrections are applied to the signal yields.
Parameters of the $B_c^+\to J/\psi \pi^+$ signal obtained with the unbinned extended maximum-likelihood fit. Only the statistical uncertainties are included. No efficiency correction is applied to the signal yield.
Summary of the total efficiencies. Quoted uncertainties correspond to statistical uncertainties of the simulated samples used. For the $B_c^+\to J/\psi \pi^+$ channel, the efficiency $\epsilon_{B_c^+\to J/\psi \pi^+}$ entering the equations for $R_{D_s^{(*)+}/\pi^+}$ is shown, while the efficiency for the full dataset is not defined.
This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for HMT events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter λ as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 71 ≤ n<sub>ch</sub> < 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 231 ≤ n<sub>ch</sub> < 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative multiplicity region 3.09 < m<sub>ch</sub> ≤ 3.86. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative k<sub>T</sub> region 400 < k<sub>T</sub> ≤500 MeV. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
Systematic uncertainties (in percent) in the correlation strength, λ, and source radius, R, for the exponential fit of the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), for p<sub>T</sub> > 100 MeV at √s= 13 TeV for the MB and HMT events. The choice of MC generator gives rise to asymmetric uncertainties, denoted by uparrow and downarrow. This asymmetry propagates through to the cumulative uncertainty. The columns under ‘Uncertainty range’ show the range of systematic uncertainty from the fits in the various n<sub>ch</sub> intervals.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the average rescaled charged-particle multiplicity, m<sub>ch</sub>, for |η| < 2.5 and both p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and the high-multiplicity track (HMT) events. The parameters γ and δ resulting from a joint fit to the MB and HMT data are presented. The total uncertainties are shown.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the pair average transverse momentum, k<sub>T</sub>, for various functional forms and for minimum-bias (MB) and high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV. The total uncertainties are shown.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for $e^+ \mu^-$ and $e^- \mu^+$ pairs to constrain physics processes beyond the Standard Model. It uses $139 \text{fb}^{-1}$ of proton$-$proton collision data recorded at $\sqrt{s} = 13$ TeV at the LHC. Targeting sources of new physics which prefer final states containing $e^{+}\mu^{-}$ to $e^{-}\mu^{+}$, the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the $R$-parity-violating coupling $\lambda'_{231}$ is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=1$, at 95% confidence level. The limit on the coupling reduces to $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=0.46$ for a mass of 1420 GeV.
Observed yields, and (post-fit) expected yields for the data-driven SM estimates. Yields are shown for the benchmark RPV-supersymmetry signal points in SR-RPV and the leptoquark signal points in SR-LQ after a fit excluding the $e^{+}\mu^{-}$ signal region and setting $\mu_{\text{sig}}=1$. Small weights correcting for muon charge biases affect all rows except that containing the fake-lepton estimate. These weights, $w_i$, cause non-integer yields. The uncertainties, $\sqrt{\sum_i w_i^2}$, are given for data to support the choice made to model the yields with a Poisson distribution.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.
The $1\sigma_{\text{exp}}$ variation of the expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.1$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.1$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.15$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.15$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.2$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.2$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.4$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.4$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.6$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0p6$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.5$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.5$.
The observed exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The expected exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The minus $1\sigma_{\text{theory}}$ variation of the observed exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The plus $1\sigma_{\text{theory}}$ variation of the observed exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The $1\sigma_{\text{exp}}$ variation of the expected exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
Observed yields, and fake lepton background yields in the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of SR-MET, along with the results of the $e^{+}\mu^{-}/e^{-}\mu^{+}$ ratio measurement and 1-sided p-value in SR-MET, binned in $M_{T2}$.
Observed yields, and fake lepton background yields in the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of SR-JET, along with the results of the $e^{+}\mu^{-}/e^{-}\mu^{+}$ ratio measurement and 1-sided p-value in SR-JET, binned in $H_{\text{P}}$.
Observed and expected 95% CL upper limits on the total number of signal events entering the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of each bin of SR-MET. The regions are binned in the same way as the ratio $\rho$ measurement. The limits are shown for a selection of 'z' values, where 'z' is the fraction of the total signal events entering the $e^{+}\mu^{-}$ channel.
Observed and expected 95% CL upper limits on the total number of signal events entering the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of each bin of SR-JET. The regions are binned in the same way as the ratio $\rho$ measurement. The limits are shown for a selection of 'z' values, where 'z' is the fraction of the total signal events entering the $e^{+}\mu^{-}$ channel.
Signal yields following each cut in the analysis, for representative $R$-parity-violating supersymmetry and leptoquark signals. All yields are MC generator-weighted and normalised to $139~\text{fb}^{-1}$. The cut labelled `Preselection' includes trigger requirements, and requires exactly one Baseline electron and one Baseline muon. At this point, the muon charge-bias correction weights are also applied. The $R$-parity-violating supersymmetry models were generated by specifying a top-quark in the final state and applying a two-lepton filter, hence the first row also includes events where the top quark decays to an electron.
A search for invisible decays of the Higgs boson as well as searches for dark matter candidates, produced together with a leptonically decaying $Z$ boson, are presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of 13 TeV, delivered by the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$ and recorded by the ATLAS experiment. Assuming Standard Model cross-sections for $ZH$ production, the observed (expected) upper limit on the branching ratio of the Higgs boson to invisible particles is found to be 19% (19%) at the 95% confidence level. Exclusion limits are also set for simplified dark matter models and two-Higgs-doublet models with an additional pseudoscalar mediator.
The expected exclusion contours as a function of (m(med), m($\chi$)), with Axial-vector mediator)
The observed exclusion contours as a function of (m(med), m($\chi$)), with Axial-vector mediator)
The expected exclusion contours as a function of (m(med), m($\chi$)), with Vector mediator)
The observed exclusion contours as a function of (m(med), m($\chi$)), with Vector mediator)
The expected exclusion contours as a function of (m(a), tan($\beta$)), with sin($\theta$) = 0.35)
The observed exclusion contours as a function of (m(a), tan($\beta$)), with sin($\theta$) = 0.35)
The expected exclusion contours as a function of (m(a), tan($\beta$)), with sin($\theta$) = 0.7)
The observed exclusion contours as a function of (m(a), tan($\beta$)), with sin($\theta$) = 0.7)
The expected exclusion contours as a function of (m(H), tan($\beta$)), with sin($\theta$) = 0.35)
The observed exclusion contours as a function of (m(H), tan($\beta$)), with sin($\theta$) = 0.35)
The expected exclusion contours as a function of (m(H), tan($\beta$)), with sin($\theta$) = 0.7)
The observed exclusion contours as a function of (m(H), tan($\beta$)), with sin($\theta$) = 0.7)
The expected exclusion contours as a function of (m(a), m(H)), with sin($\theta$) = 0.35)
The observed exclusion contours as a function of (m(a), m(H)), with sin($\theta$) = 0.35)
The expected exclusion contours as a function of (m(a), m(H)), with sin($\theta$) = 0.7)
The observed exclusion contours as a function of (m(a), m(H)), with sin($\theta$) = 0.7)
Expected lower limit on signal strength at 95% CL as a function of sin($\theta$), with m(a) = 200 GeV, m(H) = 600 GeV.
Observed lower limit on signal strength at 95% CL as a function of sin($\theta$), with m(a) = 200 GeV, m(H) = 600 GeV.
Expected lower limit on signal strength at 95% CL as a function of sin($\theta$), with m(a) = 350 GeV, m(H) = 1000 GeV.
Observed lower limit on signal strength at 95% CL as a function of sin($\theta$), with m(a) = 350 GeV, m(H) = 1000 GeV.
Observed lower limit on WIMP-nucleon cross section at 90% CL as a function of m(WIMP), assuming Higgs-portal scenario with Scalar WIMP.
Observed lower limit on WIMP-nucleon cross section at 90% CL as a function of m(WIMP), assuming Higgs-portal scenario with Majorana WIMP.
Observed lower limit on the spin-dependent WIMP–proton scattering cross-section.
Observed lower limit on the spin-independent WIMP–nucleon scattering cross-section.
Cutflow of unweighted and weighted events of $ZH$ signals in the electron channel.
Cutflow of unweighted and weighted events of $ZH$ signals in the muon channel.
Cutflow of unweighted and weighted events of DM signals (simplified DM axial-vector with m(med) = 900 GeV and m($\chi$) = 40 GeV, 2HDM+$a$ signal with m(A) = 600 GeV, m(a) = 400 GeV, tan($\beta$) = 1.0 and m($\chi$) = 10 GeV) in the electron channel.
Cutflow of unweighted and weighted events of DM signals (simplified DM axial-vector with m(med) = 900 GeV and m($\chi$) = 40 GeV, 2HDM+$a$ signal with m(A) = 600 GeV, m(a) = 400 GeV, tan($\beta$) = 1.0 and m($\chi$) = 10 GeV) in the muon channel.
This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.
Post-fit number of background events in all SR bins (after applying the BDT cuts) that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mmumu for ma ≤ 45 GeV (ma > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.
Post-fit number of background events in all SR bins without applying the BDT cuts that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mµµ for $m_a$ ≤ 45 GeV ($m_a$ > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.
Probability that the observed spectrum is compatible with the background-only hypothesis. The local $p_0$-values are quantified in standard deviations $\sigma$.
Upper limits on $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ at 95% CL including the BDT cut as a function of the signal mass.
Upper limits on $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ at 95% CL without the BDT cut as a function of the signal mass.
The number of events when applying each cut in the analysis for $m_a$ = 16 GeV. The first row shows the approximate total number of events scaled to the theoretical signal cross-section and luminosity of the full Run 2 dataset, assuming $ \mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ = 0.16%.
The number of events when applying each cut in the analysis for $m_a$ = 20 GeV. The first row shows the approximate total number of events scaled to the theoretical signal cross-section and luminosity of the full Run 2 dataset, assuming $ \mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ = 0.16%.
The number of events when applying each cut in the analysis for $m_a$ = 30 GeV. The first row shows the approximate total number of events scaled to the theoretical signal cross-section and luminosity of the full Run 2 dataset, assuming $ \mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ = 0.16%.
The number of events when applying each cut in the analysis for $m_a$ = 40 GeV. The first row shows the approximate total number of events scaled to the theoretical signal cross-section and luminosity of the full Run 2 dataset, assuming $ \mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ = 0.16%.
The number of events when applying each cut in the analysis for $m_a$ = 50 GeV. The first row shows the approximate total number of events scaled to the theoretical signal cross-section and luminosity of the full Run 2 dataset, assuming $ \mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ = 0.16%.
The number of events when applying each cut in the analysis for $m_a$ = 60 GeV. The first row shows the approximate total number of events scaled to the theoretical signal cross-section and luminosity of the full Run 2 dataset, assuming $ \mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ = 0.16%.
A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.
Distribution of the dijet invariant mass in CRZ. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in VRMET. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in the signal region, shown together with the parameterized background model (labelled "Bkg Model"). For reference, the MC prediction for the SM background is also shown (labelled "SM MC"). The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The signal region is defined to have dijet invariant mass > 20 GeV. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Unweighted and weighted number of events after each stage of selection for the NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}) = (45,10,80)$ GeV and the Z boson decaying to $e^{+}e^{-}, \;\mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The weighted number of events corresponds to an integrated luminosity of $139 \;\mathrm{fb}^{-1}$. The "skimming selection" required either a single electron or muon with $p_{T} > 100\;$ GeV or a pair of electrons or muons each with $p_{T} > 20\;$ GeV. The preselection requirements include the trigger, absence of a bad jet or bad muon, and two leptons, where a lepton is either an electron or a muon.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.
Summary of charm muon double differential cross section in pp collisions at 5.02 TeV as a function of pT. Uncertainties are statistical and systematic, respectively.
Summary of charm muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.
Summary of bottom muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.
Summary of results for charm muon RAA as a function of pT for five different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for bottom muon RAA as a function of pT for five different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for charm muon RAA to bottom muon RAA ratio as a function of pT for five different centrality. Uncertainties are statistical and systematic, respectively.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.