We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.
No description provided.
No description provided.
No description provided.
We report measurements from the CLEO detector of the rate of Ξ and Λ production in e+e− interactions in the upsilon region. Hyperon production from the decay of the ϒ(1s) is compared with continuum e+e− data. The ratio of the production rates of Λ (and Λ―) to K0 (and K―0) on the ϒ(1s) is 0.21 ± 0.03, much larger than in the continuum, 0.07 ± 0.01. The ratios of the production rates of the Ξ and Λ are comparable, 0.10±0.02 [ϒ(1S)] and 0.07 ± 0.02 (continuum). We discuss some implications of the data for gluon and quark fragmentation models.
CONTINUUM IS ECM 10.38 TO 10.64 GEV.
No description provided.
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.
No description provided.
We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.
No description provided.
No description provided.
We have observed Λc baryons in nonresonant e+e− annihilation at energies around s=10.5 GeV through their decay to Λπ+π+π−. We measure the branching fraction to be (2.8 ± 0.7 ± 1.1)%. The momentum spectrum of the Λc is similar to that of charmed mesons, providing a constraint on models of charmed-quark hadronization.
No description provided.
Data are extrapolated over whole x range using the 'Peterson' formula.
We present evidence for inclusive F-meson production in B-meson decay. The product branching fraction B(B→FX)B(F+→φπ+) is measured to be 0.0038±0.010. The F momentum spectrum indicates the presence of a large component of two-body final states in the decay B→FX.
No description provided.
DATA SAMPLE CONSISTED OF 77 1/PB. DATA TAKEN ON THE PEAK OF THE UPSI(10575).
CONTINUUM DATA SAMPLE CONSISTED OF 36 1/PB. ENERGY JUST BELOW THE UPSI(10575).
We have measured the inclusive branching ratio for B→φX to be 0.023±0.006±0.005. The momentum distribution of the φ mesons is compared with that expected from the cascade decays B→F→φ and B→D→φ. .AE
We report results on the differential and total cross sections for inclusive production of the charmed particles D*+, D*0, D0, D+, Ds, and Λc in e+e− annihilations at √s=10.55 GeV. Widely used quark fragmentation models are discussed and compared with the measured charmed-particle momentum distributions. This comparison, as well as that with measurements at other center-of-mass energies, shows the need to take QCD corrections into account and their importance for a correct interpretation of the model parameters. The observed rate of D0 and D+ production is compared to the expected total charm production cross section. We measure the probability of a charmed meson being produced as a vector meson and the D*+ decay branching fraction into D0π+.
No description provided.
No description provided.
No description provided.
Using the CLEO detector at the Cornell Electron Storage Ring, we observe B-meson decays to Λc+ and report on improved measurements of inclusive branching fractions and momentum spectra of other baryons. For the inclusive decay B¯→Λc+X with Λc+→pK−π+, we find that the product branching fraction B(B¯→Λc+X)B(Λc+→pK−π+)=(0.273±0.051±0.039)%. Our measured inclusive branching fractions to noncharmed baryons are B(B→pX)=(8.0±0.5±0.3)%, B(B→ΛX)=(3.8±0.4±0.6)%, and B(B→Ξ−X)=(0.27±0.05±0.04)%. From these rates and studies of baryon-lepton and baryon-antibaryon correlations in B decays, we have estimated the branching fraction B(B¯→Λc+X) to be (6.4±0.8±0.8)%. Combining these results, we calculate B(Λc+→pK−π+) to be (4.3±1.0±0.8)%.
No description provided.
No description provided.
We report measurements made with the CLEO detector at the Cornell Electron Storage Ring (CESR) of the total cross section for e+e−→hadrons at the ϒ(1S), ϒ(2S), and ϒ(3S), and in the nearby nonresonant continuum. We find R=3.77±0.06 (statistical) ± 0.24 (systematic) for the ratio of the nonresonant hadronic cross section to the cross section for muon-pair production at a center-of-mass total energy W=10.4 GeV. For the leptonic decay widths Γee of the ϒ(1S), ϒ(2S), and ϒ(3S) we obtain 1.30±0.05±0.08, 0.52±0.03±0.04, and 0.42±0.04±0.03 keV, respectively.