A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.
Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb$^{-1}$. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $\mathrm{T\overline{T}}$ production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $\mathrm{B\overline{B}}$ production with B quark decays to tW.
Distribution of ST in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.
Distribution of the leading jet’s DEEPAK8 light quark or gluon score in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.
Distribution of the MLP T quark score in the SR for the $T\overline{T}$ search. The observed data, predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario, and the background are all shown. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x10 and x20, respectively, for visibility.
The production of a top quark-antiquark pair in association with a W boson ($\mathrm{t\bar{t}}$W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive $\mathrm{t\bar{t}}$W production cross section in the full phase space is measured to be 868 $\pm$ 40 (stat) $\pm$ 51 (syst) fb. The $\mathrm{t\bar{t}}$W$^+$ and $\mathrm{t\bar{t}}$W$^-$ cross sections are also measured as 553 $\pm$ 30 (stat) $\pm$ 30 (syst) and 343 $\pm$ 26 (stat) $\pm$ 25 (syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61 $\pm$ 0.15 (stat) $^{+0.07}_{-0.05}$ (syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date.
Distribution of the leading lepton transverse momemtum, prefit.
Distribution of the subleading lepton transverse momemtum, prefit.
Distribution of the leading jet transverse momemtum, prefit.
The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a $\mathrm{t\bar{t}}$ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42 $_{-0.69}^{+0.64}$)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750-900 and $\gt$ 900 GeV.
Comparison between data and MC simulation for kinematic distributions based on events in the signal candidate sample for the distance between the lepton and the closest AK4 jet. The vertical bars on the points show the statistical uncertainty in the data. The shaded bands represent the total uncertainty in the MC predictions. The lower panels give the ratio of the data to the sum of the MC
Comparison between data and MC simulation for kinematic distributions based on events in the signal candidate sample for the number of AK4 jets. The vertical bars on the points show the statistical uncertainty in the data. The shaded bands represent the total uncertainty in the MC predictions. The lower panels give the ratio of the data to the sum of the MC
Comparison between data and MC simulation for kinematic distributions based on events in the signal candidate sample for the reconstruced mass of the top quark pairs. The vertical bars on the points show the statistical uncertainty in the data. The shaded bands represent the total uncertainty in the MC predictions. The lower panels give the ratio of the data to the sum of the MC
This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.
Signal region detector-level distribution for the observable $|y_{e\mu}|$.
Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.
Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.
The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.
Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The scalar $p_{T}$ sum, denoted as $H_{T}$, of the two reconstructed $\ell$ and all small-radius jets.
Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The angular separation $\Delta R$ between the two $\ell$.
Distribution of an input to the BDT classifier in the $3\ell$ category: The angular separation between $\ell_{3}$ and the nearest small-radius jet (j). The $\ell_{3}$ in is defined as the $\ell$ that is not part of the opposite-sign $\ell\ell$ pair of lowest mass.
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
A search is reported for heavy resonances and quantum black holes decaying into e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The e$\mu$, e$\tau$, and $\mu\tau$ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant $\tau$ sneutrino production in $R$ parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant $\tau$ sneutrinos are excluded for masses up to 4.2 TeV in the e$\mu$ channel, 3.7 TeV in the e$\tau$ channel, and 3.6 TeV in the $\mu\tau$ channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the e$\mu$ channel, up to 4.3 TeV in the e$\tau$ channel, and up to 4.1 TeV in the $\mu\tau$ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the e$\mu$ channel, 5.2 TeV in the e$\tau$ channel, and 5.0 TeV in the $\mu\tau$ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.
Mass distributions for the e$\mu$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.
Mass distributions for the e$\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.
Mass distributions for the $\mu\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.
Results are presented from a search for the Higgs boson decay H $\to$ Z$\gamma$, where Z $\to$$\ell^+\ell^-$ with $\ell$ = e or $\mu$. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength $\mu$, defined as the product of the cross section and the branching fraction [$\sigma($pp $\to$ H$)\mathcal{B}($H $\to$ Z$\gamma)$] relative to the standard model prediction, is extracted from a simultaneous fit to the $\ell^+\ell^-\gamma$ invariant mass distributions in all categories and is found to be $\mu$ = 2.4 $\pm$ 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to $\sigma($pp $\to$ H$)\mathcal{B}($H $\to$ Z$\gamma)$ = 0.21 $\pm$ 0.08 pb. The observed (expected) upper limit at 95% confidence level on $\mu$ is 4.1 (1.8). The ratio of branching fractions $\mathcal{B}($H $\to$ Z$\gamma) / \mathcal{B}($H $\to$ $\gamma\gamma)$ is measured to be 1.5 $^{+0.7}_{-0.6}$, which agrees with the standard model prediction of 0.69 $\pm$ 0.04 at the 1.5 standard deviation level.
The $\mathcal{D}_{\mathrm{VBF}}$ distributions for signal, simulated background, and data. The $\mathcal{D}_{\mathrm{VBF}}$ distribution includes only dijet-tagged events. The sum of contributions from all signal production mechanisms is shown by the blue line, while the contribution from only the VBF mechanism is shown by the red line. The uncertainty band incorporates all statistical and systematic uncertainties in the expected background. The dashed lines indicate the boundaries for dijet-tagged categories.
The $\mathcal{D}_{\mathrm{kin}}$ distributions for signal, simulated background, and data. The $\mathcal{D}_{\mathrm{kin}}$ distribution includes only untagged events. The sum of contributions from all signal production mechanisms is shown by the blue line. The uncertainty band incorporates all statistical and systematic uncertainties in the expected background. The dashed lines indicate the boundaries for untagged categories. The gray shaded region in the $\mathcal{D}_{\mathrm{kin}}$ distribution is excluded from the analysis.
Fits to the $m_{\ell^+\ell^-\gamma}$ data distribution in the lepton-tagged categories. In the upper panel, the red solid line shows the result of a signal-plus-background fit to the given category. The red dashed line shows the background component of the fit. The green and yellow bands represent the 68 and 95% CL uncertainties in the fit. Also plotted is the expected SM signal, scaled by a factor of 10. In the lower panel, the data minus the background component of the fit is shown.