Observation of $Υ$(1S) + Z associated production and measurement of the effective double-parton scattering cross section in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-23-007, 2026.
Inspire Record 3115234 DOI 10.17182/hepdata.159753

The observation of associated production of an $Υ$(1S) meson with a Z boson and a measurement of the ratio of its fiducial cross section to the fiducial cross section of the Z boson are presented. Both the $Υ$(1S) meson and the Z boson are identified via decays into a pair of opposite-sign muons. The analysis is based on proton-proton (pp) collision data at $\sqrt{s}$ = 13 TeV, collected with the CMS detector in 2016$-$2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. Using the production of the Z boson decaying into four muons as a normalization channel, the ratio of the fiducial cross sections $σ$(pp $\to$ Z $+$$Υ$(1S))$\mathcal{B}$(Z $\to$$μ^+μ^-$)$\mathcal{B}$($Υ$(1S) $\to$$μ^+μ^-$ ) to $σ$(pp $\to$ Z)$\mathcal{B}$(Z $\to$ 4$μ$) is measured to be $\mathcal{R}_{\mathrm{Z+Υ}\mathrm{(1S)}}$ = (21.1 $\pm$ 55 (stat) $\pm$ 0.6 (syst) $\times$ 10$^{-3}$), where stat and syst denote the statistical and systematic uncertainties, respectively. The result is used to extract the effective double-parton scattering cross section $σ_\text{eff}$ = 13.0$^{+7.7}_{-3.4}$. In addition, for the first time, $σ_\text{eff}$ is measured in bins of the transverse momentum of the $Υ$(1S) meson or of the Z boson.

9 data tables

$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

DPS $\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

More…

Measurement of the prompt $J/\psi$ pair production cross-section in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 76, 2017.
Inspire Record 1502618 DOI 10.17182/hepdata.76840

The production of two prompt $J/\psi$ mesons, each with transverse momenta $p_{\mathrm{T}}>8.5$ GeV and rapidity $|y| < 2.1$, is studied using a sample of proton-proton collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 11.4 fb$^{-1}$ collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised $J/\psi$ production, is measured as a function of the transverse momentum of the lower-$p_{\mathrm{T}}$ $J/\psi$ meson, di-$J/\psi$ $p_{\mathrm{T}}$ and mass, the difference in rapidity between the two $J/\psi$ mesons, and the azimuthal angle between the two $J/\psi$ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two $J/\psi$ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be $\sigma_{\mathrm{eff}} = 6.3 \pm 1.6 \mathrm{(stat)} \pm 1.0 \mathrm{(syst)}$ mb.

16 data tables

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the forward rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the di-$J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

More…