Date

Study of Transverse Momenta of Charged Hadrons Produced in Neutrino $p$ and Anti-neutrino $p$ Charged Current Interactions

The Birmingham-CERN-London-Munich-Oxford collaboration Jones, G.T. ; Kennedy, B.W. ; Middleton, R.P. ; et al.
Z.Phys.C 25 (1984) 121, 1984.
Inspire Record 201590 DOI 10.17182/hepdata.16211

Data from a neutrino and antineutrino hydrogen experiment with BEBC are used to investigate transverse properties of the produced charged hadrons. Measurements are presented on average transverse momenta of charged pions as functions of Feynman-x and the hadronic mass, on the transverse momentum flow within an event and on jet-related quantities. The main features of the data are well described by the LUND model. The data favour a version of the model in which soft gluon effects are included and the primordial transverse momentum of the quarks in the proton is small. Effects from 1st order QCD (hard gluon emission) are negligible.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…

An Investigation of the Emc Effect Using Anti-neutrinos Interactions in Deuterium and Neon

The WA25 & WA59 collaborations Cooper-Sarkar, Amanda M. ; Derkaoui, J. ; Faccini-Turluer, M.L. ; et al.
Phys.Lett.B 141 (1984) 133-139, 1984.
Inspire Record 200773 DOI 10.17182/hepdata.30546

Antineutrino interactions in BEBC are compared to look for differences between the differential cross sections per nucleon in neon and in deuterium. The identical geometries, beam spectra and muon identification criteria and acceptances allow comparison with very small systematic errors. The results are compared in detail with μ and e scattering data from EMC and SLAC. We find no rise in the ratio d σ/ d x ( ν Ne )/σ/ d x ( ν D 2 ) at low x , independent of Q 2 up to Q 2 ∼ 14 GeV 2 .

1 data table

VALUES OF Q**2 IN THIS TABLE ARE :- 1.07,2.59,4.33,6.14,7.67,8.28,6.35 (FOR ALL Q**2) AND :-,7.9,9.5,11.5,13.2,13.9,11.6 (FOR Q**2 > 4.5 ).


DETERMINATION OF THE NEUTRAL TO CHARGED CURRENT CROSS-SECTION RATIO FOR ANTI-NEUTRINOS INTERACTIONS ON PROTONS

The BEBC TST NEUTRINO collaboration Moreels, J. ; Van Doninck, W. ; Alamatsaz, H. ; et al.
Phys.Lett.B 138 (1984) 230-234, 1984.
Inspire Record 204297 DOI 10.17182/hepdata.30573

An exposure of BEBC equipped with the hydrogen-filled TST to the v μ wide band beam at the CERN SPS has been used to study v μ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R p v = 0.33 ± 0.04 . When combined with the value of R p v previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.24 −0.08 +0.06 and ρ = 1.07 −0.08 +0.06 . Fixing the parameter ρ = 1 yields sin 2 θ W = 0.18 ± 0.04.

1 data table

No description provided.


TOTAL ANTI-NEUTRINOS NUCLEON CHARGED CURRENT CROSS-SECTION IN THE ENERGY RANGE 10-GEV - 50-GEV

Asratian, A.E. ; Efremenko, V.I. ; Fedotov, A.V. ; et al.
Phys.Lett.B 137 (1984) 122-124, 1984.
Inspire Record 203433 DOI 10.17182/hepdata.30593

The total v μ N charged current cross section in the energy interval 10–50 GeV is unfolded from 15' bubble chamber antineutrino data. The method is to isolate the quasielastic events and determine their relative contribution to the overall charged current sample. The scale parameter is found to be (0.29 ± 0.03) × 10 −38 cm 2 GeV −1 . Relevance of the method for neutrino oscillation studies is discussed.

3 data tables

Measured charged current total cross section.

Measured charged current total cross section.

Measured charged current total cross section.


FRAGMENTATION IN NEUTRINO AND ANTI-NEUTRINOS CHARGED CURRENT INTERACTIONS ON PROTON AND NEUTRON

The AMSTERDAM-BERGEN-BOLOGNA-PADUA-PISA-SACLAY-TURIN collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Z.Phys.C 24 (1984) 119-131, 1984.
Inspire Record 207322 DOI 10.17182/hepdata.16217

Some experimental properties of the charged hadronic fragments are compared for νp, νn,\(\bar vp\) and\(\bar vn\) interactions: multiplicities of forward and backward going particles,xF distributions for pions, fragmentation functions and theirQ2 andW2 dependence. The results are compared with the predictions of the Lund fragmentation model.

1 data table

No description provided.


AZIMUTHAL ASYMMETRY OF NEGATIVELY CHARGED HADRONS IN THE REACTION ANTI-NEUTRINO N ---> MU+ H- X

Ammosov, V.V. ; Asratian, A.E. ; Berge, J.P. ; et al.
JETP Lett. 38 (1983) 248-251, 1983.
Inspire Record 202188 DOI 10.17182/hepdata.69924

None

2 data tables

No description provided.

No description provided.


Measurement of the Bjorken X and Y Distributions in Neutral and Charged Current $\nu_{\mu}$ Interactons

Baltay, C. ; Bregman, M. ; Caroumbalis, D. ; et al.
Phys.Rev.Lett. 52 (1984) 1948-1951, 1984.
Inspire Record 205295 DOI 10.17182/hepdata.20446

Distributions of the Bjorken scaling variables x and y, and the structure function F+(x), are presented both for neutral-current and for charged-current νμ interactions. The data were obtained by use of the Fermilab 15-ft neon bubble chamber exposed to a narrow-band νμ beam. Results are based on 151 neutral-current and 683 charged-current events. An important feature of the neutral-current analysis is the event-by-event reconstruction of the outgoing neutrino.

3 data tables

No description provided.

DATA REQUESTED FROM C.BALTAY ON 20/9/91.

DATA REQUESTED FROM C.BALTAY ON 20/9/91.


Nucleon Structure Functions from High-Energy Neutrino Interactions with Iron and QCD Results

MacFarlane, D. ; Purohit, M.V. ; Messner, R.L. ; et al.
Z.Phys.C 26 (1984) 1-12, 1984.
Inspire Record 195928 DOI 10.17182/hepdata.16212

Nucleon structure functions obtained from neutrino and anti-neutrino scattering on iron nuclei at high energies (Ev=30 to 250 GeV) are presented. These results are compared with the results of other lepton-nucleon scattering experiments. The structure functions are used to test the validity of the Gross-Llewellyn-smith sum rule, which measures the number of valence quarks in the nucleons, and to obtain leading and second order QCD fits.

19 data tables

Measured charged current total cross section.

No description provided.

No description provided.

More…

Measurement of the Neutron and Proton Structure Functions From Neutrino and Anti-neutrinos Scattering in Deuterium

The WA25 collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Phys.Lett.B 135 (1984) 231, 1984.
Inspire Record 192102 DOI 10.17182/hepdata.30611

Data from an exposure of the BEBC bubble chamber filled with deuterium to neutrino and antineutrino wide band beams have been used to extract the x dependence of the structure functions for scattering on protons and neutrons and the fractional momentum distributions of the valence quarks and the antiquarks of different flavours. The difference F n 2 − F p 2 is compared with recent data from high energy μD scattering. A result is also obtained on the sum rule giving the difference between the number of up and down quarks in the nucleon.

1 data table

No description provided.