The total cross sections of 18.7 GeV Σ − hyperons on protons and deutrons have been measured to be 34.0 ± 1.1 mb and 61.3 + 1.4 mb, respectively. The derived Σ − -neutron cross section is 30.0 ± 1.2 mb.
CROSS SECTIONS CORRECTED FOR FORWARD COULOMB AND NUCLEAR SCATTERING.
The proof is given for the existence of the reaction e + e − → h ± h ∓ in the energy range 1400–2400 MeV, and its energy dependence is compared with that of e + e − → e ± e ∓ , in the same experimental conditions of observation. The exponent of the s -dependence of the ratio α = (e + e − → h ± h ∓ )/ (e + e − → e ± e ∓ ) is measured to be n = 2.08 ± 0.45, in the s -range (1.96 − 5.76) GeV 2 , on the basis of 51 e + e − → h ± h ∓ events and 8918 e + e − → e ± e ∓ events observed.
CROSS SECTION FOR PRODUCTION OF CHARGED HADRON PAIRS.
A large solid angle detector has been used to observe two body events produced by electron-positron collisions in the Orsay storage ring. From the π + π − excitation curve in the ϱ region we have deduced the amplitude and the phase of the ω-ϱ interference, and the ϱ resonance paramaters: M ϱ = (775.4±7.3) MeV, Γ ϱ = (149.6 ± 23.2) MeV, √ B ( ω → π + π − ) = 0.19 ± 0.05, φ = (85.7 ± 15.3) 0 , σ ( e + e − → ϱ ) = (1.00 ± 0.13) μ b at S = M ϱ 2 , B ( ϱ → e + e − = (4.1 ± 0.5) × 10 −5 , Γ ( ϱ → e + e − ) = (6.1 ± 0.7) keV, ( g ϱ 2 /4 π ) = 2.26 ± 0.25, ( g ϱππ 2 /4 π ) = 2.84 ± 0.50.
STATISTICAL ERRORS ONLY. CROSS SECTION AT RHO0 PEAK IS 1.00 +- 0.13 MUB FROM FIT.
The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.
No description provided.
We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.
No description provided.
Results are reported on K − -neutron interactions at c.m. energies near 2 GeV. The interactions are dominated by strong production of hyperon resonances, particularly Σ(1385), Λ(1405) and Λ(1520). Production cross sections and angular distributions are given for the Σ(1385), Λ(1405) and Λ(1520) and branching fractions to decay modes observed in the experiment are given for Σ(1385) and Λ(1520). The strong energy dependence of some features of the data suggests that s -channel effects are dominant.
No description provided.
RESONANCE CROSS SECTIONS FOR <K- PI- P> FINAL STATE.
RESONANCE CROSS SECTIONS FOR <AK0 PI- N> FINAL STATE.
Results are presented on elastic scattering of 10.1 GeV/ c K − mesons on protons, based on a sample of 16 261 kinematically-fitted bubble-chamber events. The differential cross section is given over the | t |- range of 0.06 to 2.5 GeV 2 and is fitted with the expressions a e bt , A e Bt + Ct 2 and ( P e Qt + Re St ) over various intervals of t . The results are compared with those of other experiments at nearby energies. Upper limits of | α | < 0.28 and σ B < 0.4 μ b (both at a 90% confidence level) are given for the ratio of real to imaginary part of the forward-scattering amplitude and the backward-elastic-scattering cross section, respectively.
No description provided.
ERROR INCLUDES STATISTICAL ERROR AND ERROR IN TOTAL CROSS SECTION USED FOR NORMALIZATION. EXTRAPOLATION OF D(SIG)/DT TO T=0 PROVIDES ABOUT 0.5 PCT UNCERTAINTY.
NO BACKWARD EVENTS OBSERVED. LARGEST ANGLE EVENT SEEN WAS AT 64 DEG (-T = 2.33 GEV**2).
We report on coherent interactions in a 2.5 event/μb K − d exposure. The predominant channel studied is K − d → K − π + gp − d (415 events). We find strong Q- and L-production in the (K ππ ) system. The production mechanism determines I = 1 2 for both enhancements and a spin-parity in the series 0 − , 1 + ,2 − … . A spin-parity analysis shows the Q to be a 1 + object, while the L is 1 + or 2 − , although a higher spin cannot be excluded. The cross sections for Q and L production and other final states are presented.
CORRECTED FOR UNSEEN RECOIL DEUTERONS BY EXTRAPOLATION. (UNCORRECTED CROSS SECTIONS ARE THOSE OBSERVED WITH P(DEUT) > 140 MEV/C).
Data on p p annihilations at rest into K 1 0 K 1 0 ω 0 and K + K − ω 0 are discuss New measurements for the mass, the width and the branching ratio of the ω 0 are presented. Evidence for quasi two-body annihilations p p → ϕπ, p ̄ p → S ∗ π is discussed.
PRODUCTION RATE FOR ANNIHILATION AT REST.
At 3 GeV/ c , the total and differential cross sections of the reactions K − n → Y π − have been determined for nine S = −1 baryonic states. Backward peaks associated with a dip near u = −0.2 are observed in many cases. They have been interpreted, for the isospin-zero Y-states, in terms of a proton-exchange mechanism. The backward peaks in the reactions K − n → Λπ − and K − n → Σ o π − have been more quantitatively related to the backward π N → N π differential cross sections at the same energy. This comparison leads to the conclusion, that the first reaction is dominated by nucleon exchange, whereas the second one requires a more complex exchange mechanism.
No description provided.
No description provided.
No description provided.