In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .
NC, CF, and TR are the color factors for SU(3) group.
The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
We present a study of jet multiplicities based on 37 000 hadronic Z 0 boson decays. From this data we determine the strong coupling constant α s =0.115±0.005 ( exp .) −0.010 +0.012 (theor.) to second order QCD at √ s =91.22GeV.
Errors are combined statistical and systematic uncertainties.
No description provided.
A study of the two-jet mass spectrum measured with the UA 2 calorimeter has revealed a signal from hadronic decays ofW andZ bosons above a large background. Production and decay properties of the signal have been measured. The combined production cross-section σ·B(W, Z → two jets) is 9.6±2.3 (stat.)±1.1 (syst.) nb, compared with an expectation of 5.8 nb calculated to order αs2. A limit on the production cross-section of additional heavy vector bosons decaying into two jets is given as a function of the boson mass.
No description provided.
The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].
Corrected jet rates.
Second systematic error is theoretical.
We have measured the rate of D ∗± meson production inside the jets produced in p p collisions at √ s = 630 GeV. For jets in the transverse energy range 15< E T <60 GeV we find a production rate of 0.10±0.04±0.03 D ∗± per jet, which is in good agreement with perturbative QCD calculations. In addition, we find that the D ∗± fragmentation distribution is strongly peaked towards low z consistent with gluon splitting as the dominant production mechanism.
No description provided.
The relative production ratio of 3-jet events to the total number of hadronic events was studied in e + e − annihilations at centre-of-mass energies between 54 and 61.4 GeV. The QCD scale parameter has been determined to be Λ MS =254 −47 +55 ±56 MeV on the basis of a QCD cascade with the next-to-leading logarithmic approximation.
Data are uncorrected for initial radiation, detector effects, and quark hadronization.
LAMBDA-MSBAR determined from the 3-jet ratio.
The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η|<0.7. Data are compared with QCD calculations; axigluons are excluded with 95% confidence in the region 120<MA<210 GeV for axigluon width ΓA=NαsMA6, with N=5.
Corrected mass distributions for jets restricted to the pseudorapidity region ABS(ETARAP) <0.7.
Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e + e − annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( α s 2 ) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ MS and of the renormalization scale μ 2 in O( α s 2 ) QCD results in values similar to those obtained in the continuum of e + e − annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of α s , as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.
Data are corrected for final acceptance and resolution of the detector. No explicit corrections for hadronisation effects are applied.