Using a quark-diquark fragmentation model, in which either the Field-Feynman or the Lund model is coupled with a quark-diquark distribution function, we study transverse momentum distributions,pT, for the inclusive reactionspp→hadron +anything at 360 GeV/c. We find that a primordial mean transverse momentum 〈kT〉≃0.4 GeV/c can well reproduce thepT2 distributions of charged hadrons, π0,Ks0, Λ0,K* and Σ* and the Feynmanx−pT correlations. We confirm that a diquark in a proton plays an important rôle in reproducing thex−pT correlation of Λ0.
No description provided.
The isoscalar nucleon structure functionsF2(x, Q2) andxF3(x, Q2) are measured in the range 0<Q2<64 GeV2, 1.7<W2<250 GeV2,x<0.7 using ν and\(\bar v\) interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such lowW2 values, it is found that a low\(\Lambda _{\overline {MS} } \) value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.
No description provided.
No description provided.
No description provided.
Results are presented from a study of the reaction p p→ Λ Λ near threshold. Over 3000 events recorded at s values 14.6 and 25.5 MeV above the Λ Λ threshold (2231.2 MeV) have been analysed. Results for the production cross section, differential cross section, and the Λ and Λ polarization are given at both energies and are compared with recent theoretical calculations of this process.
Statistical errors only.
No description provided.
No description provided.
We have measured the inclusive production properties of D and D messons produced from pp interactions at s =27.4 GeV . The differential production cross section is well represented by the empirical form d 2 σ d x F d P 2 T = 1 2 [σ ( D / D )(n+1)b](1−|x F |) n exp (−bp 2 T ) with n=4.9 ± 0.5, b=(1.0±0.1)( GeV /c) −2 , and the inclusive D / D cross section σ ( D / D ) is (30.2±3.3) ωb. The QCD fusion model predicts D / D production which is in good agreement with our data except for the magnitude of the cross section which depends sensitively on the assumed mass of the charm quark.
No description provided.
No description provided.
No description provided.
In a study of proton-proton interactions at\(\sqrt s= 26GeV\), inclusive distributions of single pions and systems of pions of various charge combinations are presented, as well as the production ratio obtained in association with various trigger particles. The results are compared to current phenomenological models in an attempt to understand multiparticle productions in hadron collisions.
.
The ratio of the cross section for Σ0 inclusive production to the cross section for Λ0 inclusive production has been measured with 28.5-GeV/c protons incident on a beryllium target at an average laboratory production angle of 4°. This ratio was measured to be 0.278±0.011±0.05, where the uncertainties are statistical and systematic in that order. The ratio does not depend strongly on the momentum of the produced particle between 10 and 24 GeV/c. The effect of Σ0 contamination on previous determinations of the polarization of inclusively produced Λ0’s is discussed.
No description provided.
No description provided.
Clear evidence is presented for the production of an Ω ∗− resonance of mass 2253±13 MeV/ c 2 and width 81±38 MeV/ c 2 in K − p interactions at 11 GeV/ c . The state is observed in the Ξ (1530)K̄ decay mode, and the corresponding inclusive cross section is estimated to be 630±180 nb. Comparisons are made with theoretical predictions and with similar states observed inhyperon beam induced data.
No description provided.
We present measurements of forward-backward energy asymmetries of τ-lepton decay products from the reaction e+e−→τ+τ− in data collected with the MAC detector operating at the SLAC storage ring PEP at a center-of-mass energy of 29 GeV. The energy asymmetries for the decays τ→ντeν¯e, τ→ντμν¯μ, τ→ντπ, and τ→ντρ are interpreted as effects caused by the combination of maximally parity-violating weak τ decays and a longitudinal polarization produced by the interference of electromagnetic and weak processes. From the forward-backward polarization asymmetry AP=(0.06±0.07)×(1±0.011), we determine the coupling-constant product gaegvτ=(0.26 ±0.31)×(1±0.011). Assuming gae=-(1/2 as expected, we find gvτ=(-0.52±0.62)×(1±0.011), consistent with the prediction of the Glashow-Weinberg-Salam model of electroweak interactions. Alternatively, assuming the standard-model prediction of negligible polarization in τ-pair production, the leptonic energy spectra are used to measure the Michel parameter to be 0.79±0.10±0.10, consistent with the V-A hypothesis for the τν¯τ-W vertex.
No description provided.
None
Mean charged multiplicity for NSD events extrapolated to the full phase space.
Charged particle pseudorapidity density for NSD events at pseudorapidiy = 0.
Corrected charged particle multiplicity distribution for NSD events.
We have measured the W transverse momentum distribution ( p T W ) using a sample of 323 W → eν and W → μν events produced in proton-antiproton collisions at the CERN collider. In the present letter we extend the study of the distribution up to p T W ∼- m W and compare to leading and higher order QCD. This comparison is a precise test of QCD with hadron colliders and the inclusive spectrum gives good agreement over a large range of p T W . However we observed two events at very large p T W (∼- 100 GeV/ c ) in which the W candidate recoils against an energetic di-jet system. Both events have a very large missing transverse energy and a jet-jet mass compatible with the W mass. In a separate analysis, a topologically similar event has been observed in which a high-mass di-jet system is balanced by a large missing transverse energy which could be interpreted as Z 0 → ν ν decay. We cannot easily explain these three events in terms of explicit second-order QCD calculations. However we cannot exclude at this stage the possibility that they are the result of non-gaussian fluctuations in the response of UA1 calorimetry or a statistical fluctuation in the data.
THESE NUMBERS WRE READ OFF FIG 1A.