A search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The d$E$/d$x$ energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or higgsino-like dark matter candidate capable of explaining the known dark matter relic density.
Comparison between the data and SM background predictions for the number of b-tagged jets in the long track final state.
Comparison between the data and SM background predictions for the number of b-tagged jets in the long track final state.
Comparison between the data and SM background predictions for the number of jets in the long track final state.
A search for direct production of low-mass dimuon resonances is performed using $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017-2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb$^{-1}$. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1-2.6 GeV and 4.2-7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world's best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient $\varepsilon^2$ in the dark photon model above 10$^{-6}$ are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle $\sin(\theta_\text{H})$ above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation $\tan\beta$ = 0.5.
The signal acceptance and reconstruction efficiency are extracted from DY and pseudoscalar simulations. The acceptance of DY simulation is the fraction of signal events where a muon pair is present, and each muon has ${p}_{\mathrm{T}} >4$ GeV and $|\eta|<1.9$. The acceptance of pseudoscalar simulation is the fraction of signal events where a muon pair is present, each muon has ${p}_{\mathrm{T}} >5$ GeV and $|\eta|<1.9$, and the muon pair have ${p}_{\mathrm{T}}>20~(35)$ GeV for $m_{\mu\mu}>4.2$ GeV ($<2.6$ GeV). The reconstruction efficiency is the efficiency of signal events satisfying the trigger requirements, the muon identification, and vertex selection.
Expected and observed model independent upper limits at 95% CL on the product of the signal cross section, the branching fraction to a pair of muons for the inclusive dimuon selection, and fiducial acceptance.
Expected and observed model independent upper limits at 95% CL on the product of the signal cross section, the branching fraction to a pair of muons for the boosted dimuon selection, and fiducial acceptance.
Measurements of inclusive and normalized differential cross sections of the associated production of top quark-antiquark and bottom quark-antiquark pairs, ttbb, are presented. The results are based on data from proton-proton collisions collected by the CMS detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The cross sections are measured in the lepton+jets decay channel of the top quark pair, using events containing exactly one isolated electron or muon and at least five jets. Measurements are made in four fiducial phase space regions, targeting different aspects of the ttbb process. Distributions are unfolded to the particle level through maximum likelihood fits, and compared with predictions from several event generators. The inclusive cross section measurements of this process in the fiducial phase space regions are the most precise to date. In most cases, the measured inclusive cross sections exceed the predictions with the chosen generator settings. The only exception is when using a particular choice of dynamic renormalization scale, $\mu_\mathrm{R}=\frac{1}{2} \prod_{i = \mathrm{t, \bar{t}, b, \bar{b}}} m_{\mathrm{T},i}^{1/4}$, where $m_{\mathrm{T}, i}^2 = m_i^2 + p^2_{\mathrm{T}, i}$ are the transverse masses of top and bottom quarks. The differential cross sections show varying degrees of compatibility with the theoretical predictions, and none of the tested generators with the chosen settings simultaneously describe all the measured distributions.
Fiducial cross sections from the measurements of all observables, compared to predictions from different ttbb simulation approaches. For each of the normalized differential measurements the fiducial cross section in the respective phase space is also determined. In the paper only one representative observable is quoted for each fiducial phase space, while here the measured cross section with the uncertainties from the fit to the respective observable is summarized.
Compatibility of normalized differential cross section measurements with modeling predictions. The compatibility is quantified with z scores for each of the theoretical predictions, given the unfolded normalized differential cross sections and their covariances. A lower value indicates a better agreement between prediction and measurement. A value of z = 2 indicates a p-value of 5%. In the calculation of the z score only the measurement uncertainties and the statistical uncertainties of the modeling predictions are taken into account
Normalized differential cross section of $|\eta(\mathrm{b}^{\mathrm{add.}}_{1})|$ in $\geq 6$ jets: $\geq 4 \mathrm{b}$ phase space.
The polarization of $\tau$ leptons is measured using leptonic and hadronic $\tau$ lepton decays in Z $\to$$\tau^+\tau^-$ events in proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by CMS at the CERN LHC with an integrated luminosity of 36.3 fb$^{-1}$. The measured $\tau^-$ polarization at the Z boson mass pole is $\mathcal{P}_{\tau}$(Z) = $-$0.144 $\pm$ 0.006 (stat) $\pm$ 0.014 (syst) = $-$0.144 $\pm$ 0.015, in good agreement with the measurement of the $\tau$ lepton asymmetry parameter of $A_{\tau}$ = 0.1439 $\pm$ 0.0043 = $-\mathcal{P}_{\tau}$(Z) at LEP. The $\tau$ polarization depends on the ratio of the vector to axial-vector couplings of the $\tau$ leptons in the neutral current expression, and thus on the effective weak mixing angle $\sin^{2}\theta_\mathrm{W}^{\text{eff}}$, independently of the Z boson production mechanism. The obtained value $\sin^{2}\theta_\mathrm{W}^{\text{eff}}$ = 0.2319 $\pm$ 0.0008 (stat) $\pm$ 0.0018 (syst) = 0.2319 $\pm$ 0.0019 is in good agreement with measurements at e$^+$e$^-$ colliders.
Fit results for the average $\tau^{-}$ lepton polarization for the 11 event categories and the combined fit as the lowest point in the figure
Fit results for the average $\tau^{-}$ lepton polarization for categories grouped into 4 channels.
A comparison of the $\tau$ lepton asymmetry, $A_{\tau}$ measured from the tau lepton polarization in this paper and other measurements.
A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp $\to$ pp + Z/$\gamma$ + X, in proton-tagged events from proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp $\to$ pp + Z/$\gamma$ + X are set.
Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-multi(−z) proton reconstruction categories.
Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-single(−z) proton reconstruction categories.
Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for single(+z)-multi(−z) proton reconstruction categories.
A search for physics beyond the standard model (SM) in the final state with a hadron- ically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of- mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb−1. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector bo- son and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper lim- its on the cross section of t-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.
The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.
Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.
Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).
A search is performed for exclusive high-mass $\gamma\gamma$$\to$ WW and $\gamma\gamma$$\to$ ZZ production in proton-proton collisions using intact forward protons reconstructed in near-beam detectors, with both weak bosons decaying into boosted and merged jets. The analysis is based on a sample of proton-proton collisions collected by the CMS and TOTEM experiments at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 100 fb$^{-1}$. No excess above the standard model background prediction is observed, and upper limits are set on the pp $\to$ pWWp and pp $\to$ pZZp cross sections in a fiducial region defined by the diboson invariant mass $m$(VV) $\lt$ 1 TeV (with V = W, Z) and proton fractional momentum loss 0.04 $\lt$$\xi$$\lt$ 0.20. The results are interpreted as new limits on dimension-6 and dimension-8 anomalous quartic gauge couplings.
Expected and observed upper limits on the AQGC operators $a^W_0/\Lambda^2$, with no unitarization. The $y$ axis shows the limit on the ratio of the observed cross section to the cross section predicted for each anomalous coupling value ($\sigma_\mathrm{AQGC}$).
Expected and observed upper limits on the AQGC operators $a^W_C/\Lambda^2$, with no unitarization. The $y$ axis shows the limit on the ratio of the observed cross section to the cross section predicted for each anomalous coupling value ($\sigma_\mathrm{AQGC}$).
Expected and observed upper limits on the AQGC operators $a^Z_0/\Lambda^2$, with no unitarization. The $y$ axis shows the limit on the ratio of the observed cross section to the cross section predicted for each anomalous coupling value ($\sigma_\mathrm{AQGC}$).
A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.
Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.
Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.
Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.
Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.
Expected and observed 95\% CL upper limits on the branching fraction of the top quark decaying to the Higgs boson and a light-flavor quark (either an up or a charm quark)