We have used 106 pb~-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.
No description provided.
Di-jet angular ratio, defined as the number with CHI < 2.5 divided by the number with CHI between 2.5 and 5.
Using data recorded by the CLEO-II detector at CESR, we report evidence of a pair of excited charmed baryons, one decaying into Λc+π+ and the other into Λc+π−. The doubly charged state has a measured mass difference M(Λc+π+)−M(Λc+) of 234.5±1.1±0.8 MeV/c2 and a width of 17.9−3.2+3.8±4.0MeV/c2, and the neutral state has a measured mass difference M(Λc+π−)−M(Λc+) of 232.6±1.0±0.8 MeV/c2 and a width of 13.0−3.0+3.7±4.0MeV/c2. We interpret these data as evidence of the Σc*++ and Σc*0, the spin 32+ excitations of the Σc baryons.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1- (1/Z)-CONST(NAME=EPS)/(1-Z))**2.
We report on a measurement of the branching fraction of the Cabibbo-suppressed decay Bu+→J/ψπ+, where J/ψ→μ+μ−. The data were collected by the Collider Detector at Fermilab during 1992–1995 and correspond to an integrated luminosity of 110pb−1 in p¯p collisions at s=1.8TeV. A signal of 28−9+10 events is observed and we determine the ratio of branching fractions B(Bu+→J/ψπ+)/B(Bu+→J/ψK+) to be [5.0−1.7+1.9(stat)±0.1(syst)]%. Using the world average value for B(Bu+→J/ψK+), we calculate the branching fraction B(Bu+→J/ψπ+) to be (5.0−1.9+2.1)×10−5. We also search for the decay Bc+→J/ψπ+ and report a 95% confidence level limit on σ(Bc+)B(Bc+→J/ψπ+)/σ(Bu+)B(Bu+→J/ψK+) as a function of the Bc+ lifetime.
The ratio of the cross sections times the branching fraction.
Two samples of exclusive semileptonic decays, 579 B 0 → D ∗+ ℓ − ν ℓ events and 261 B 0 → D + ℓ − ν ℓ events, are selected from approximately 3.9 million hadronic Z decays collected by the ALEPH detector at LEP. From the reconstructed differential decay rate of each sample, the product of the hadronic form factor F (ω) at zero recoil of the D (∗)+ meson and the CKM matrix element | V cb | are measured to be F D ∗+ (1)|V cb | = (31.9 ± 1.8 stat ± 1.9 syst ) × 10 −3 , F D + (1)| V cb | = (27.8 ± 6.8 stat ± 6.5 syst ) × 10 −3 . The ratio of the form factors F D + (1) and F D ∗+ (1) is measured to be F D + (1) F D ∗+ (1) = 0.87 ± 0.22 stat ± 0.21 syst . A value of | V cb | is extracted from the two samples, using theoretical constraints on the slope and curvature of the hadronic form factors and their normalization at zero recoil, with the result | V cb | = (34.4 ± 1.6 stat ± 2.3 syst ± 1.4 th ) × 10 −3 . The branching fractions are measured from the two integrated spectra to be Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (5.53 ± 0.26 stat ±0.52 syst ) %, Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (2.35 ± 0.20 stat ± 0.44 syst ) %.
The formfactors are evaluated at zero recoil of D meson. Two different methods are used (see text for details). VCB is the KCM matrix element. The formfactor fitted to dependence: FF(OM) = FF(1)*(1-CONST*(OM-1)).
VCB is the KCM matrix element.
VCB is the KCM matrix element.
The scale dependence of the evolution of photoproduction cross sections with the photon-proton centre of mass energy W is studied using low Q~2 < 0.01 GeV~2 e~+p interactions collected by the H1 experiment at HERA. The value of the largest transverse momentum of a charged particle in the photon fragmentation region is used to define the hard scale. The slope of the $W$ dependence of the cross section is observed to increase steeply with increasing transverse momentum. The result is compared to measurements of the Q~2 evolution of the W dependence of the virtual photon-proton cross section. Interpretations in terms of QCD and in terms of Regge phenomenology are discussed.
The gamma p cross section is parameterized as CONST*(W**2)**POWER.
Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
We have studied azimuthal correlations in singly-tagged e+e− → e+e−μ+μ− events at an average Q2 of 5.2 GeV2. The data were taken with the OPAL detector at LEP at e+e− centre-of-mass energies close to the Z0 mass, with an integrated luminosity of approximately 100 pb−1. The azimuthal correlations are used to extract the ratio $F_{B}^{αmma}/F_{2}^{αmma}$ of the QED structure functions $F_{B}^{αmma}(x,Q^{2})$ and $F_{2}^{αmma}(x,Q^{2})$ of the photon. In leading order and neglecting the muon mass $F_{B}^{αmma}$ is expected to be identical to the longitudinal structure function $F_{L}^{αmma}$. The measurement of $F_{B}^{αmma}/F_{2}^{αmma}$ is found to be significantly different from zero and to be consistent with the QED prediction.
No description provided.
This letter describes the first observation of W boson pair production at a centre-of-mass energy s =161 GeV in the OPAL detector at LEP. The analysis is sensitive to all expected W + W − decay channels. A total of 28 events have been selected for an integrated luminosity of 9.89±0.06 pb −1 . This is consistent with the Standard Model expectation, including signal and background contributions. The W pair production cross-section is measured to be σ WW = 3.62 −0.82 +0.93 ±0.16 pb. An analysis of the predicted M W dependence of the accepted cross-section, taking into account interference in the four-fermion production processes, yields M W = 80.40 −0.41−0.10 +0.44+0.09 ±0.10 GeV, where the first and second uncertainties are statistical and systematic, respectively, and the third arises form the beam energy uncertainty.
No description provided.
We have searched for excited states of charged and neutral leptons, e ∗ , μ ∗ , τ ∗ and ν ∗ , in e + e − collisions at s =161 GeV using the OPAL detector at LEP. No evidence for their existence was found. With the most common coupling assumptions, the topologies from excited lepton pair production include ℓ + ℓ − γγ and ℓ + ℓ − W + W − , with the subsequent decay of the virtual W bosons. From the analysis of these topologies, 95% confidence level lower mass limits of 79.9 GeV for e ∗ , 80.0 GeV for μ ∗ , 79.1 GeV for τ ∗ , 78.3 GeV for ν e ∗ , 78.9 GeV for ν μ ∗ and 76.2 GeV for ν τ ∗ are inferred. From the analysis of W + W − and γγ topologies with missing energy and using alternative coupling assingments which favour charged ℓ ∗± and photonic ν ∗ decays, 95% confidence level lower mass limits of 77.1 GeV for each ℓ ∗± flavour and 77.8 GeV for each ν ∗ flavour are inferred. From the analysis of the ℓ + ℓ − γ , ℓ ± W ∓ and single γ final states expected from excited lepton single production, upper limits on the ratio of the coupling to the compositeness scale, f Λ , are determined for excited lepton masses up to the kinematic limit.
95 pct upper limits for pair production of the excited leptons.
We report on a search for pair production of a fourth generation charge -1/3 quark (b') in pbar p collisions at sqrt(s) = 1.8 TeV at the Fermilab Tevatron using an integrated luminosity of 93 pb^-1. Both quarks are assumed to decay via flavor changing neutral currents (FCNC). The search uses the signatures gamma + 3 jets + mu-tag and 2 gamma + 2 jets. We see no significant excess of events over the expected background. We place an upper limit on the production cross section times branching fraction that is well below theoretical expectations for a b' quark decaying exclusively via FCNC for b' quark masses up to m(Z) + m(b).
Cross section times branching fraction for the gamma+3jets channel.
Cross section times branching fraction for the 2gamma+2jets channel.
No description provided.