A sample of 105 e + e − events with an invariant mass greater than 11 GeV/ c 2 produced in pp collisions at a center-of-mass energy of 62.3 GeV is discussed. Cross sections are presented as a function of mass and transverse momentum. The multiplicity, transverse momentum, and azimuthal dependence of associated particles are also studied.
No description provided.
No description provided.
No description provided.
A high-statistics experiment on the reaction π − p→ π + π − π 0 n at 8.06 GeV/ c has been performed using a spectrometer detecting both charged particles and gamma rays. A partial-wave analysis based on the isobar model has been carried out for π + π − π 0 data in the mass range between 0.86 and 1.50 GeV for four t ′ regions: 0.0–0.1, 0.1–0.25, 0.25–0.45 and 0.45–0.95 (GeV/ c 2 ). Two axial-vector resonances, a 1 (1260) and h 1 (1170), were observed in the analysis. The masses and widths of a 1 and h 1 were determined to be M (a 1 = 1121 ± 8 MeV, Λ (a 1 = 239± 11 MeV, M (h 1 = 1168±4 MeV and Λ (h 1 = 345±6 MeV, respectively, by fitting the Breit-Wigner formula to the partial wave amplitude. A fit including the Deck type background was also tried in each t ′ region. The results showed a small effect on these resonance parameters and were consistent with those obtained by the simple Breit-Wigner fitting.
Production cross section of A2(1320) from the 12+ rhoD1+ partial wave.
Production cross section of H1(1190) from the 01+ rhoS0+ partial wave.
Production cross section of A1(1270) from the 11+ rhoS1+ partial wave.
The ratio of the structure function F 2 n / F 2 p ( x ) has been measured in deep inelastic scattering of 274 GeV muons on hydrogen and deuterium targets exposed simultaneously to the beam. The results were obtained from 0.3 (0.6) million events from hydrogen (deuterium) in the range 0.004 < x < 0.8 and 1 < Q 2 < 190 GeV 2 . At x < 0.25 both the statistical and the systematic error is below 2%. Implications for parton distributions and for the σ w / σ z production cross section ratio in p p collisions are discussed. When compared to other results obtained at lower energies, the data indicate a Q 2 dependence of the ratio.
No description provided.
A study of the two-jet mass spectrum measured with the UA 2 calorimeter has revealed a signal from hadronic decays ofW andZ bosons above a large background. Production and decay properties of the signal have been measured. The combined production cross-section σ·B(W, Z → two jets) is 9.6±2.3 (stat.)±1.1 (syst.) nb, compared with an expectation of 5.8 nb calculated to order αs2. A limit on the production cross-section of additional heavy vector bosons decaying into two jets is given as a function of the boson mass.
No description provided.
We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.
Hadronic cross section from the charged track selection trigger.
Hadronic cross section from the calorimeter selection trigger.
Averaged hadronic cross section.
Data on the multiplicity and inclusive spectra of γ produced in inelastic pNe20 and pN interactions at 300 GeV are presented. The γ multiplicity for pNe20 interactions is 11.43±0.23, and the ratio of 〈nγ〉 for pNe20 and pN interactions is 1.48±0.05. From an analysis of the effective-mass distributions, 〈nπ0〉=4.91±0.52 and 〈nη0〉=1.47±0.33. In fact, η0 production is much higher in pNe20 interactions [R(η0π0)=0.66±0.12 for np≥21] than in pN interactions [R(η0π0)=0.06±0.04]. No η′(958) signal is seen. Strong correlations between 〈nγ〉 and np, the number of secondary protons, are observed, primarily from the central and target fragmentation regions. Inclusive y* and p⊥ spectra are analyzed and evidence for low-energy cascading and rescattering of fast particles in the projectile fragmentation region is discussed. The data are compared to the predictions of the additive quark model, the Lund model, and the dual parton model.
No description provided.
GAMMA-MULTIPLICITY FOR (PROTON-NUCLEON)-INTERACTION WAS OBTAINED AT AVERAGING OVER (PP) AND (PN) EVENTS, AND THEN WAS USED IN THE PRESENTED RATIO.
No description provided.
Data on multiplicity, correlations, and inclusive spectra of KS0 mesons and Λ0(Λ¯0) hyperons produced with xF≤0 in inelastic pNe20 and pN interactions at 300 GeV are presented and compared. The inclusive cross sections for pNe20 (pN) with xF≤0 are 61.1±2.8 mb (3.34±0.64 mb) for KS0, 40.8±2.5 mb (1.89±0.29 mb) for Λ0, and 3.9±0.5 mb (0.31±0.08 mb) for Λ¯0. The multiplicity ratio for pNe20 and pN interactions is 1.58±0.16 for KS0, 1.95±0.23 for Λ0, and 1.12±0.43 for Λ¯0. We have observed the Σ0(1193) hyperon and measured the average multiplicity (nΣ0=0.049±0.027) for xF≤0. We have also observed the strange resonances K*(892), K*(1415), and Σ*(1385) with xF≤0 and measured the fraction of V0 coming from each resonance. Λ0 polarization for xF≤0 is measured and shows a decrease as p⊥ increases [pΛ(pNe20)≈−0.25 at p⊥=1.5 GeV/c], in agreement with other experiments which measure polarization in the region xF≫0. Since (43±7)% of the Λ0 are produced in Σ0→Λ0γ decays, the Λ0 polarization is significantly greater than the measured values. Experimental results are compared to predictions of the Lund model and the dual parton model of soft hadron-nucleus and hadron-nucleon interactions.
No description provided.
Axis error includes +- 0.0/0.0 contribution (NOT GIVEN).
No description provided.
We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.
Data requested from the authors.
Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.
From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.
Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.
Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.
Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.
We have measured the cross-section of the reaction e + e − → γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + > 103 GeV and Λ − 118 GeV are found. For the decays Z 0 → γ ,Z 0 → π 0 γ , Z 0 → γγγ we find upper limits of 2.9 × 10 −4 ,2.9×10 −4 ,4.1×10 −4 and 1.2×10 −4 , respectively. All limits are at 95% CL.
No description provided.