Date

Collaboration

Measurements of jet multiplicity and jet transverse momentum in multijet events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 742, 2023.
Inspire Record 2170533 DOI 10.17182/hepdata.133279

Multijet events at large transverse momentum ($p_\mathrm{T}$) are measured at $\sqrt{s}$ = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with $p_\mathrm{T}$$>$ 50 GeV that are produced in association with a high-$p_\mathrm{T}$ dijet system is measured in various ranges of the $p_\mathrm{T}$ of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $\Delta\phi_{1,2}$ between the two highest $p_\mathrm{T}$ jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $p_\mathrm{T}$ jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.

17 data tables

Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.

Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.

Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.

More…

Search for W' bosons decaying to a top and a bottom quark at $\sqrt{s} =$13 TeV in the hadronic final state

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 820 (2021) 136535, 2021.
Inspire Record 1857809 DOI 10.17182/hepdata.102392

A search is performed for W' bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137 fb$^{-1}$. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Both left- and right-handed W' bosons with masses below 3.4 TeV are excluded at 95% confidence level, and the most stringent limits to date on W' bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.

8 data tables

The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.

The reconstructed m$_{tb}$ distributions in data and expected background in validation region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.

The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2017. Yield in each bin is divided by the corresponding bin width.

More…

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

80 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

29 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

More…

Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 683, 2016.
Inspire Record 1477209 DOI 10.17182/hepdata.75330

A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale ($\Lambda$) values below 92 TeV are excluded at the 95% confidence level, corresponding to gluino masses below 2000 GeV. For large values of $\tan\beta$, values of $\Lambda$ up to 107 TeV and gluino masses up to 2300 GeV are excluded. In the simplified model, gluino masses are excluded up to 1570 GeV for neutralino masses around 100 GeV. Neutralino masses up to 700 GeV are excluded for all gluino masses between 800 GeV and 1500 GeV, while the strongest exclusion of 750 GeV is achieved for gluino masses around 1400 GeV.

32 data tables

mTtau distributions for "extended SR selections" of the 1 tau channel, for the Compressed SR selection without the mTtau > 80 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.

mTtau distributions for "extended SR selections" of the 1 tau channel, for the Medium Mass SR selection without the mTtau > 200 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.

mTtau distributions for "extended SR selections" of the 1 tau channel, for the High Mass SR selection without the mTtau > 200 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.

More…

Measurement of exclusive $\gamma\gamma\rightarrow W^+W^-$ production and search for exclusive Higgs boson production in $pp$ collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 032011, 2016.
Inspire Record 1475477 DOI 10.17182/hepdata.79951

Searches for exclusively produced $W$ boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$ and exclusively produced Higgs boson in the process $pp(gg) \rightarrow pHp$ have been performed using $e^{\pm}\mu^{\mp}$ final states. These measurements use 20.2 fb$^{-1}$ of $pp$ collisions collected by the ATLAS experiment at a center-of-mass energy $\sqrt{s}=8$ TeV at the LHC. Exclusive production of $W^+W^-$ consistent with the Standard Model prediction is found with 3.0$\sigma$ significance. The exclusive $W^+W^-$ production cross-section is determined to be $\sigma (\gamma\gamma\rightarrow W^{+}W^{-}\rightarrow e^{\pm}\mu^{\mp} X) = 6.9 \pm 2.2 (\mathrm{stat.}) \pm 1.4 (\mathrm{sys.})$ fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95\% confidence-level as $-1.7 \times 10^{-6} < a_0^W/\Lambda^2 < 1.7 \times 10^{-6}$ GeV$^{-2}$and $-6.4 \times 10^{-6} < a_C^W/\Lambda^2 < 6.3 \times 10^{-6}$ GeV$^{-2}$. A 95\% confidence-level upper limit on the total production cross-section for exclusive Higgs boson is set to 1.2 pb.

5 data tables

Observed allowed ranges for 6 dimensional aQGCs, cutoff 500 GeV.

Expected allowed ranges for 6 dimensional aQGCs, no cutoff).

Observed allowed ranges for 8 dimensional aQGCs, cutoff 500).

More…

Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 117 (2016) 182002, 2016.
Inspire Record 1468167 DOI 10.17182/hepdata.74822

This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

1 data table

The measured and extrapolated inelastic cross section. The statistical uncertainty is negligible and is therefore displayed as zero. The first systematic uncertainty is the experimental systematic uncertainty apart from the luminosity, the second is the luminosity uncertainty, and the third is the extrapolation uncertainty.


Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 06 (2015) 121, 2015.
Inspire Record 1359293 DOI 10.17182/hepdata.70231

A search is presented for particle dark matter produced in association with a pair of top quarks in pp collisions at a centre-of-mass energy of sqrt(s) = 8 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 19.7 inverse femtobarns. This search requires the presence of one lepton, multiple jets, and large missing transverse energy. No excess of events is found above the SM expectation, and upper limits are derived on the production cross section. Interpreting the findings in the context of a scalar contact interaction between fermionic dark matter particles and top quarks, lower limits on the interaction scale are set. These limits are also interpreted in terms of the dark matter-nucleon scattering cross sections for the spin-independent scalar operator and they complement direct searches for dark matter particles in the low mass region.

4 data tables

Systematic uncertainties from various sources and their impact on the total background prediction.

Expected number of background events in the SR, expected number of signal events for a DM particle with the mass $M_{\chi}$ = 1 GeV, assuming an interaction scale $M_{*}$ = 100 GeV, and observed data. The statistical and systematic uncertainties are given on the expected yields.

Expected number of signal events in SR assuming an interaction scale $M_{*}$ = 100 GeV, signal efficiencies, and observed and expected limits at 90% CL on production cross sections for $\mathrm{pp \rightarrow t\bar{t} + \chi\bar{\chi}}$, for various DM particle masses.

More…

Distributions of Topological Observables in Inclusive Three- and Four-Jet Events in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 302, 2015.
Inspire Record 1345159 DOI 10.17182/hepdata.75115

This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7 TeV with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1 inverse femtobarns. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MADGRAPH interfaced with PYTHIA6 displays the best overall agreement with data.

12 data tables

CORRECTED NORMALIZED DISTRIBUTION OF THREE-JET MASS IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE SECOND-LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

More…

Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 052009, 2015.
Inspire Record 1340084 DOI 10.17182/hepdata.66764

A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 inverse femtobarns. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude: string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; W' bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z' bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.

10 data tables

Inclusive dijet mass spectrum from wide jets (points) compared to a fit (solid curve) and to predictions including detector simulation of multijet events and signal resonances. The predicted multijet shape (QCD MC) has been scaled to the data (see text). The vertical error bars are statistical only and the horizontal error bars are the bin widths. For comparison,the signal distributions for a W resonance of mass 1900 GeV and an excited quark of mass 3.6 TeV are shown. The bin-by-bin fit residuals scaled to the statistical uncertainty of the data , (data - fit)/$\sigma_{data}$, are shown at the bottom and compared with the expected signal contributions.

Observed 95% CL upper limits on $\sigma B A$ for narrow qq, qg, and gg resonances, from the inclusive analysis for signal masses between 1.2 and 5.5 TeV.

Observed 95% CL upper limits on $\sigma B A$ for narrow gg/bb, qq/bb, and bg resonances from the b-enriched analysis, for signal masses between 1.2 and 4.0 TeV. The upper limits are given for different ratios $f_{bb}$ for gg/bb and qq/bb resonances, and for 100% branching fraction into bg.

More…