From a total data sample of 701.1 pb^-1 recorded with e+e- centre-of-mass energies of sqrt = 161-209 GeV with the OPAL detector at LEP, 11693 W-pair candidate events are selected. These data are used to obtain measurements of the W-pair production cross sections at 10 different centre-of-mass energies. The ratio of the measured cross sections to the Standard Model expectation is found to be: data/SM = 1.002 +- 0.011(stat.) +- 0.007(syst.) +- 0.005(theory), where the uncertainties are statistical, experimental systematics and theory systematics respectively. The data are used to determine the W boson branching fractions, which are found to be consistent with lepton universality of the charged current interaction. Assuming lepton universality, the branching ratio to hadrons is determined to be 67.41 +- 0.37(stat.) +- 0.23(syst.)%, from which the CKM matrix element Vcs is determined to be 0.96+-0.017(stat.)+-0.012(syst.). The differential cross section as a function of the W^- production angle is measured for the qqev and qqmv final states. The results described in this paper are consistent with the expectations from the Standard Model.
Measured cross section for the (lepton nu lepton nu) decay mode.
Measured cross section for the (quark quark lepton nu) decay mode.
Measured cross section for the (quark quark quark quark) decay mode.
Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.
The fraction of longitudinal polarization for leptonically and hadronically decaying W bosons. The average values for all the centre of mass energies and for both lepton and hadron decay combined are also given.
The luminosity weighted average over all the centre of mass energies of the diagonal elements of the RHO++ and RHO-- SDM as a function of the cosine of the angle of the W- boson for the leptonic decay channel.
The luminosity weighted average over all the centre of mass energies of the diagonal element of the RHO00 SDM as a function of the cosine of the angle of the W- boson for both leptonic and hadronic decay channels, and combined.
Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.
CM energy values.
Measured cross section for QUARK QUARKBAR (HADRON) production. The data are corrected to no interference between initial and final state radiation.
Measured cross section for MU+ MU- production. The data are corrected to no interference between initial and final state radiation.
A study of Z-boson pair production in e+e- annihilation at center-of-mass energies between 190 GeV and 209 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nn), quark and lepton pairs, (qql+l-, qqnn) and only hadrons (qqqq) are considered. In all states with at least one Z boson decaying hadronically, lifetime, lepton and event-shape tags are used to separate bb pairs from qq final state. Limits on anomalous ZZgamma and ZZZ couplings are derived from the measured cross sections and from event kinematics using an optimal observable method. Limits on low scale gravity with large dimensions are derived from the cross sections and their dependence on polar angle.
The NC2 Z0-pair cross sections obtained from fits to the data.
The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b
The inclusive D* production cross section.
The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.
The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.
The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.
Total cross section in the given phase space and assuming ALPHA = 1/137.
Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.
Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.
We search for lepton flavour violating events (e mu, e tau and mu tau) that could be directly produced in e+e- annihilations, using the full available data sample collected with the OPAL detector at centre-of-mass energies between 189 GeV and 209 GeV. In general, the Standard Model expectations describe the data well for all the channels and at each sqrt(s). A single e mu event is observed where according to our Monte Carlo simulations only 0.019 events are expected from Standard Model processes. We obtain the first limits on the cross-sections sigma(e+e- -> e mu, e tau and mu tau) as a function of sqrt(s) at LEP2 energies.
No description provided.
The process e+ e- -> e+ e- Z/gamma* is studied with the OPAL detector at LEP at a centre of mass energy of sqrt(s) = 189 GeV. The cross-section times the branching ratio of the Z/gamma* decaying into hadrons is measured within Lorentz invariant kinematic limits to be (1.2 +/- 0.3 +/- 0.1) pb for invariant masses of the hadronic system between 5 GeV and 60 GeV and (0.7 +/- 0.2 +/- 0.1) pb for hadronic masses above 60 GeV. The differential cross-sections of the Mandelstam variables s-hat, t-hat, and u-hat are measured and compared with the predictions from the Monte Carlo generators grc4f and PYTHIA. From this, based on a factorisation ansatz, the total and differential cross-sections for the subprocess e gamma -> e Z/gamma* are derived.
Measured values of the cross section times the branching ratio for the (Z0/GAMMA*) decay into hadrons within the restricted kinematic limits.
Differential cross-section dsig_ee/dm_qq.
Differential cross-section dsigma_ee/dsqrt(shat).
Measurements are presented of the polarisation of W+W- boson pairs produced in e+e- collisions, and of CP-violating WWZ and WWGamma trilinear gauge couplings. The data were recorded by the OPAL experiment at LEP during 1998, where a total integrated luminosity of 183 pb^-1 was obtained at a centre-of-mass energy of 189 GeV. The measurements are performed through a spin density matrix analysis of the W boson decay products. The fraction of W bosons produced with longitudinal polarisation was found to be sigma_L/sigma_total = (21.0 +- 3.3 +- 1.6)% where the first error is statistical and the second systematic. The joint W boson pair production fractions were found to be sigma_TT/sigma_total = (78.1 +- 9.0 +- 3.2) %, sigma_LL/sigma_total = (20.1 +- 7.2 +- 1.8) % and sigma_TL/sigma_total = (1.8 +- 14.7 +- 3.8) %. In the CP-violating trilinear gauge coupling sector we find kappa_z = -0.20 +0.10 -0.07, g^z_4 = -0.02 +0.32 -0.33 and lambda_z = -0.18 +0.24 -0.16, where errors include both statistical and systematic uncertainties. In each case the coupling is determined with all other couplings set to their Standard Model values except those related to the measured coupling via SU(2)_LxU(1)_Y symmetry. These results are consistent with Standard Model expectations.
Individual W-boson transverse polarised cross-sections.
Individual W-boson longitudinal polarised cross-sections.
W pair polarized cross-sections. (C=TT), (C=LL), and (C=TL) stand for both W transversely polarised, for both W longitudinally polarised, and for transversely and longitudinally polarisedW-bosons, respectively.
From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.
Total W+ W- pair production cross section.
Cross sections for the individual decay modes of the W+ W-.