The production ofK0, Λ and\(\bar \Lambda \) particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function ofxF andW2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the averageK0 multiplicity in the forward region favor a strangeness suppression factors/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum ofK0 and Λ particles.
No description provided.
No description provided.
No description provided.
Measurements are presented of the variation with Q 2 (scaling violation) of the hadron multiplicity in deep inelastic muon-proton scattering. An increase in the average multiplicity of both the charged hadrons and K 0 mesons is observed with increasing Q 2 or x Bj for fixed centre-of-mass energy W . The study of the shape of the effective fragmentation function D h ( z , W , Q 2 ) shows that the increase of the particle yield with Q 2 takes place for low z particles. The variation of the hadron distributions with Q 2 is also studied in the current fragmentation region where a decrease in multiplicity is observed. Such effects are expected from QCD.
No description provided.
No description provided.
None
Backward Multiplicity.
Forward Multiplicity.
No description provided.
The production of K 0 s, Λs and Λ s has been studied in a 280 GeV muon-proton scattering experiment with almost complete coverage of all kinematic regions. A study is made of the dependence of the multiplicities on the hadronic centre of mass energy, W , and of the Feynman x distributions. It is found that K 0 and Λ production is mostly central and increases strongly with W , whereas Λ production comes mainly from the remnant target system and is only weakly W dependent.
AVERAGE VALUES OF VARIABLES ARE <Q**2>=12GEV**2 , <NU>=76GEV , <W**2>=130GEV**2 , <X BJ>=0.11.
AVERAGE VALUES OF VARIABLES ARE <Q**2>=12GEV**2 , <NU>=76GEV , <W**2>=130GEV**2 , <X BJ>=0.11.
AVERAGE VALUES OF VARIABLES ARE <Q**2>=12GEV**2 , <NU>=76GEV , <W**2>=130GEV**2 , <X BJ>=0.11.