We have measured the differential cross-section and the analyzing power (polarization) for p-He4 elastic scattering at incident kinetic energies of 0.56, 0.80, 1.03, 1.24, and 1.73 GeV. The experiment used a polarized proton beam incident on a liquid helium target and a single arm magnetic spectrometer to detect elastic scattering. Both the differential cross sections and the analyzing power show structure near −t=0.25 (GeV/c)2 which decreases in magnitude with increasing energy. Both multiple scattering and optical model interpretations of the data are discussed. NUCLEAR REACTIONS elastic scattering, p-He4; GeV energies; measured differential cross section; measured polarization; comparison with theory.
No description provided.
No description provided.
No description provided.
We present the results obtained with the magnetic detector DM1 at the Orsay storage ring ACO for the reaction e + e − → π + π − π 0 from 483 to 1100 MeV in the center of mass. Our data show without ambiguity an interference effect between the ω and φ mesons, which corresponds to a negative coupling constant product ratio Re( g γω g ω →3 π / g γφ g φ →3 π ) ; however our measurements above the φ, performed using kinematical analysis, can only be explained by a higher energy contribution. In addition, the parameters of the ω have been obtained with an improved accuracy compared to other experiments, and particularly the branching ratio B ω →e + e − = (6.75±0.69) × 10 −5 . We confirm that the reaction e + e − → π + π − π 0 proceeds essentially via a quasi-two-body state ϱπ , at the energy of the φ.
FITTED CROSS SECTION AT OMEGA PEAK IS 1410 +- 130 NB AND AT PHI PEAK IS 615 +- 55 NB.
We present data obtained at the ISR, on the determination of the ratio R = γ π 0 at s = 30.6 GeV and we compare the results with our previous measurement at s = 53.2 GeV. The ratio R = γ π 0 integrated over the interval 0.1 ⩽ χ T ⩽ 0.2 is (1.6 ± 0.5) × 10 −2 and we obtain an indication of a universal χ T dependence.
No description provided.
On a selected sample of 2171 events, observed in the big heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined up to the laboratory energy E v ̄ = 8 GeV . The total cross section is found to be a linear function of the antineutrino energy expressed by σ tot (E v ̄ ) = (0.26 ± 0.020) × 10 −38 × E v ̄ ( GeV ) cm 2 . The energy dependence of 〈q 2 〉 v ̄ is found to be given by 〈q 2 〉 v ̄ = (0.15 ± 0.04)E v ̄ + (0.05 ± 0.12) ( GeV /c) 2 . With a simplified nuclear model the ratio of cross sections on neutrons andprotons has been estimated as a function of energy and for two different values of the scaling variable x . The results are compared with the prediction of the naive quark parton model.
Measured charged current total cross section.
New data for the reaction e + e − →ϒ(9.46) have been obtained using the DASP detector at the DORIS storage ring. The electronic width Γ ee is (1.5±0.4) keV. The branching ratio for the decay into muon pairs is (2.5 ± 2.1)%. Energy spectra for inclusive production of hadrons are given.
VISIBLE HADRONIC TOTAL CROSS SECTION.
INVARIANT INCLUSIVE PRODUCTION CROSS SECTION E*D3(SIG)/DP**3 BOTH ON AND OFF THE UPSILON(9.46) RESONANCE. NO SIGNIFICANT DIFFERENCE IN EXPONENTIAL SLOPE AS A FUNCTION OF PARTICLE ENERGY E(P=3).
Inclusive energy spectra of protons, deuterons, and tritons were measured with a telescope of silicon and germanium detectors with a detection range for proton energies up to 200 MeV. Fifteen sets of data were taken using projectiles ranging from protons to Ar40 on targets from Al27 to U238 at bombarding energies from 240 MeV/nucleon to 2.1 GeV/nucleon. Particular attention was paid to the absolute normalization of the cross sections. For three previously reported reactions, He fragment cross sections have been corrected and are presented. To facilitate a comparison with theory the sum of nucleonic charges emitted as protons plus composite particles was estimated and is presented as a function of fragment energy per nucleon in the interval from 15 to 200 MeV/nucleon. For low-energy fragments at forward angles the protons account for only 25% of the nucleonic charges. The equal mass Ar40 plus Ca systems were examined in the center of mass. Here at 0.4 GeV/nucleon Ar40 plus Ca the proton spectra appear to be nearly isotropic in the center of mass over the region measured. Comparisons of some data with firestreak, cascade, and fluid dynamics models indicate a failure of the first and a fair agreement with the latter two. In addition, associated fast charged particle multiplicities (where the particles had energies larger than 25 MeV/nucleon) and azimuthal correlations were measured with an 80 counter array of plastic scintillators. It was found that the associated multiplicities were a smooth function of the total kinetic energy of the projectile. NUCLEAR REACTIONS U(Ne20,X), EA=240 MeV/nucleon; U(Ar40,X), Ca(Ar40,X), U(Ne20,X), Au(Ne20,X), Ag(Ne20,X), Al(Ne20,X), U(He4,X), Al(He4,X), EA=390 MeV/nucleon; U(Ar40,X), Ca(Ar40,X), U(Ne20,X), U(He4,X), U(p,X), EA=1.04 GeV/nucleon; U(Ne20,X), EA=2.1 GeV/nucleon; measured σ(E,θ), X=p,d,t.
No description provided.
No description provided.
No description provided.
The energy dependence of the K L 0 -K S 0 transmission regeneration amplitudes on deuterons and neutrons in the momentum region 10–50 GeV/ c is determined. The moduli of the modified transmission amplitudes are momentum dependent. These dependences are fitted by the expression A j p − nj , where A j and n j ( j = d, n) are constants: A d =2.88 ±0.04 mb , n d =0.546±0.030, for deuterons , A n =1.97 ±0.14 mb , n n =0.530±0.019, for neutrons , The amplitude phases do not depend on the kaon momentum and are equal to ϕ d = (−130.9 ± 2.7)° ϕ n = (−132.3 ± 1.7)°. The mean value of the ratio of the total cross-section differences for K 0 and K 0 interactions with neutrons and protons is determined. The residues of the partial ω and ϱ amplitudes, which contribute to the kaon-nucleon interaction amplitudes, are also obtained.
FORWARD CROSS SECTION, AMPLITUDE AND PHASE FOR K0 REGENERATION.
(AK0 - K0) TOTAL CROSS SECTION DIFFERENCES.
We report on the experimental results obtained at the ISR for the η particle production at 90° and √ s = 30.6 and 53.2 GeV. We determine the invariant cross section and the p t distribution in the interval 1 ⩽ p t ⩽ 5 GeV/ c . We find that the p t distribution has the same shape of the π 0 production and differ from it by a constant factor R 90° = 0.5 ± 0.07.
No description provided.
Inclusive production of vector and tensor mesons is studied in a K − p experiment at 32 GeV/ c in the MIRABELLE bubble chamber. The K ∗ 0 (890) , ϱ 0 and ω cross sections are comparable, about 4 mb each. The K ∗ 0 (1420 and cross sections are also comparable, about 1 mb each. The K ∗ o ̈ + (890), Φ, K ∗ o ̈ − (1420) and f cross sections beam fragmentation; ϱ production is almost forward-backward symmetric in the c.m.s. The p T production slopes of K ∗ o ̈ − (890) and ϱ are similar, the Φ slope is shallower. Vector and tensor mesons alone are responsible for ≅50% (≅60%) of final-state pions
No description provided.
A sample of 56 909 events of the reaction π − p→K + K − n at 10 GeV/ c has been measured in the Omega Spectrometer at CERN. In the K + K − system, besides production of mesons in the S ∗ /φ, f 0 / A 2 , g /ω ∗ and h regions we observe a new structure at 2.20 GeV with a width of the order of 200 MeV.
BREIT-WIGNER RESONANCES PLUS SMOOTH BACKGROUND FITTED TO K+ K- MASS SPECTRUM. RESTRICTIVE T-CUTS TO ENHANCE THE X(2200) GIVE CONSISTENT RESULTS.