Cross sections for the production of two isolated muons up to high di-muon masses are measured in ep collisions at HERA with the H1 detector in a data sample corresponding to an integrated luminosity of 71 pb^-1 at a centre of mass energy of sqrt{s} = 319 GeV. The results are in good agreement with Standard Model predictions, the dominant process being photon-photon interactions. Additional muons or electrons are searched for in events with two high transverse momentum muons using the full data sample corresponding to 114 pb^-1, where data at sqrt{s} = 301 GeV and sqrt{s} = 319 GeV are combined. Both the di-lepton sample and the tri-lepton sample agree well with the predictions.
Integrated cross sections for electroweak muon pair production in the evaluated phase space. The cross section has the di-muon contributions from UPSILON, TAU-PAIR and QUARK-QUARKBAR decay subtracted.
Cross section for the production of two muons in e p interactions as a function of the di-muon mass. This data sample includes di-muons from UPSILON, TAU-PAIR and QUARK-QUARKBAR decays.
Cross section for the production of two muons as a function of the muon transverse momentum (two entries per event).
Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05
Differential ep cross section for dijet production as a function of the invariant mass of the two jets.
Differential ep cross section for dijet production as a function of the average transverse energy the two jets.
Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.
The process e+ e- -> e+ e- Z/gamma* is studied with the OPAL detector at LEP at a centre of mass energy of sqrt(s) = 189 GeV. The cross-section times the branching ratio of the Z/gamma* decaying into hadrons is measured within Lorentz invariant kinematic limits to be (1.2 +/- 0.3 +/- 0.1) pb for invariant masses of the hadronic system between 5 GeV and 60 GeV and (0.7 +/- 0.2 +/- 0.1) pb for hadronic masses above 60 GeV. The differential cross-sections of the Mandelstam variables s-hat, t-hat, and u-hat are measured and compared with the predictions from the Monte Carlo generators grc4f and PYTHIA. From this, based on a factorisation ansatz, the total and differential cross-sections for the subprocess e gamma -> e Z/gamma* are derived.
Measured values of the cross section times the branching ratio for the (Z0/GAMMA*) decay into hadrons within the restricted kinematic limits.
Differential cross-section dsig_ee/dm_qq.
Differential cross-section dsigma_ee/dsqrt(shat).
Three-jet production is studied for the first time in deep-inelastic positron-proton scattering. The measurement carried out with the H1 detector at HERA covers a large range of four-momentum transfer squared 5 < Q^2 < 5000 GeV^2 and invariant three-jet masses 25 < M_(3jet) < 140 GeV. Jets are defined by the inclusive k_T algorithm in the Breit frame. The size of the three-jet cross section and the ratio of the three-jet to the dijet cross section R_(3/2) are described over the whole phase space by the predictions of perturbative QCD in next-to-leading order. The shapes of angular jet distributions deviate significantly from a uniform population of the available phase space but are well described by the QCD calculation.
The inclusive 3-Jet cross section as a function of Q**2.
The ratio of 3 jets to 2 jets as a function of Q**2.
The inclusive 3-JET cross section as a function of Bjorken scaling variableX for the Q**2 range 5 to 100 GeV**2.
A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 44 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x_pom values.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of Q**2.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average transverse momentum of the two jets in the c.m.frame.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average pseudorapidity of the two jets in the lab frame.
Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.
Rates of charged current events as a function of Q**2.
Rates of neutral current events as a function of Q**2.
Normalised distribution in Y2 for NC and CC dijet events. Y2 is the smallest scaled value of KT (KTJET**2/W**2) given by the combination of (2+1) jets. The +1 refers to the proton remnant jet.
The total hadronic cross-section sigma_gg(W) for the interaction of real photons, gg->hadrons, is measured for gg centre-of-mass energies 10
No description provided.
No description provided.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d
Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.
Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.
Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.
We have measured the reaction γγ → π + π − π 0 using the PLUTO detector at PETRA. A pronounced enhancement is seen in the π + π − π 0 mass distribution corresponding to the A 2 meson. The event configuration in this enhancement favors a 2 + spin-parity assignment. The value of Γ γγ =1.06 ±0.18±0.19 keV obtained for the two-photon decay width of the A 2 agrees with previous measurements and with quark model predictions.
No description provided.