None
No description provided.
No description provided.
THESE ARE CORRECTED DATA FROM YF 40, 34. PROPER TABLES IN YF 40, 34 MUST. BE REPLACED BY THE GOOD ONES.
The c .m.s. angular distributions of protons and 1r mesons emitted in emulsions in protonproton collisions were measured. The proton angular distribution is symmetric and possesses a pronounced anisotropy. The n-meson distribution is symmetric and more isotropic. The angular dependence of the total energy in the c .m .s. has been determined for protons. It is shown that, on the average, protons expend about 74% of their energy in the c.m.s. on meson production. Within the limits of experimental error, the mean values of the transverse momentum and the total energy in the c .m.s. are the same for various multiplicities.
No description provided.
No description provided.
No description provided.
This investigation was performed with a 24-liter propane bubble chamber [i] and is a continu- ation of our previous work on the production of strange particles by 7-8-BeV 1r- mesons on hydrogen and carbon. [ 2 - 5 ] The properties of 1r 0 mesons inferred from the y quanta accom- panying A and K 0 production are given, and are compared with the properties of 1r+ and 7r- mesons emitted in A and K 0 production processes. The possibility of a resonance with radi- ative decay is noted.
No description provided.
No description provided.
The simultaneous production of pion resonances and strange particles was investigated. The simultaneous production of p 0 mesons and A-K pairs was observed in events characterized by charged particle multiplicity ns = 4 and having cross sections upo = 20 ± 8 ~b. Cross sections for the production of w and YJ resonances are presented. The 1340-MeV peak in the distribution of four-pion effective masses is discussed.
No description provided.
The cross section for production of $\Lambda$ and $\Sigma^0$ particles in lead by $K^0_L$, mesons with a mean energy E = 150 MeV is measured. The cross section is found to be $\sigma = (212 \pm 38) \times 10^{-27}$ cm$^2$
No description provided.
The production of A ( ~ 0 ) hyperons (henceforth denoted A hyperons for short) and K 0 mesons by negative pions on carbon was investigated. The angular and momentum distribu- tions of these particles and the cross sections for their production are determined, and the cross sections of the different channels of the reactions are estimated. The fraction of strange particles produced in the secondary processes is estimated for the first time. The momentum spectrum of the A hyperons (in the pion-nucleon c.m.s.) is compared with the spectrum for rr-p interactions. The experimental data are compared with the results of cascade-model calculations made by the Monte Carlo method.
No description provided.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
The kaon electroproduction reaction 1H(e,e'K+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at electron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 1.90 GeV**2.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2.. Errors contain both statistics and systematics.
We present a LO evaluation of helicity densities of valence, \Delta u_v+\Delta d_v, non-strange sea, \Delta\bar{u}+\Delta\bar{d}, and strange quarks, \Delta s (assumed to be equal to \Delta\bar{s}). They have been obtained from the inclusive asymmetry A_{3,d} and the semi-inclusive asymmetries A^{\pi+}_{1,d}, A^{\pi-}_{1,d}, A^{K+}_{1,d}, A^{K-}_{1,d} measured in polarised deep inelastic muon-deuteron scattering. The full deuteron statistics of COMPASS (years 2002-2004 and 2006) has been used. The data cover the range Q^2 > 1 (GeV/c)^2 and 0.004<x<0.3. Both non-strange densities are found to be in a good agreement with previous measurements. The distribution of \Delta s(x) is compatible with zero in the whole measured range, in contrast to the shape of the strange quark helicity distribution obtained in most LO and NLO QCD fits. The sensitivity of the values of \Delta s(x) upon the choice of fragmentation functions used in the derivation is discussed.
Inclusive asymmetry as a function of X.
Charged pion and kaon semi-inclusive asymmetries as functions of X.
Correlations coefficients of the unfolded asymmetries.
The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.
The weighted average of the spin transfers for the 2003 and 2004 data.
The XL dependence of the spin transfer from muons to the LAMBDA hyperon.
The X dependence of the spin transfer from muons to the LAMBDA hyperon.