The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a $\mathrm{t\bar{t}}$ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42 $_{-0.69}^{+0.64}$)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750-900 and $\gt$ 900 GeV.
A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp $\to$ pp + Z/$\gamma$ + X, in proton-tagged events from proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp $\to$ pp + Z/$\gamma$ + X are set.
A test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) to $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$) is determined from the measured double ratio $R$(K) of these decays to the respective branching fractions of the B$^\pm$$\to$ J/$\psi$K$^\pm$ with J/$\psi$$\to$$\mu^+\mu^-$ and e$^+$e$^-$ decays, which allow for significant cancellation of systematic uncertainties. The ratio $R$(K) is measured in the range 1.1 $\lt$$q^2$$\lt$ 6.0 GeV$^2$, where $q$ is the invariant mass of the lepton pair, and is found to be $R$(K) = 0.78 $^{+0.47}_{-0.23}$, in agreement with the standard model expectation $R$(K) $\approx$ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $q^2$ range, $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) = (12.42 $\pm$ 0.68) $\times$ 10$^{-8}$, is consistent with the present world-average value and has a comparable precision.
The forward-backward asymmetry in Drell-Yan production and the effective leptonic electroweak mixing angle are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. The measurement uses both dimuon and dielectron events, and is performed as a function of the dilepton mass and rapidity. The unfolded angular coefficient $A_4$ is also extracted, as a function of the dilepton mass and rapidity. Using the CT18Z set of parton distribution functions, we obtain $\sin\theta^\ell_\text{eff}$ = 0.23152 $\pm$ 0.00031, where the uncertainty includes the experimental and theoretical contributions. The measured value agrees with the standard model fit result to global experimental data. This is the most precise $\sin\theta^\ell_\text{eff}$ measurement at a hadron collider, with a precision comparable to the results obtained at LEP and SLD.
A search for the decay of the Higgs boson to a $Z$ boson and a light, pseudoscalar particle, $a$, decaying respectively to two leptons and to two photons is reported. The search uses the full LHC Run 2 proton-proton collision data at $\sqrt{s}=13$ TeV, corresponding to 139 fb$^{-1}$ collected by the ATLAS detector. This is one of the first searches for this specific decay mode of the Higgs boson, and it probes unexplored parameter space in models with axion-like particles (ALPs) and extended scalar sectors. The mass of the $a$ particle is assumed to be in the range 0.1-33 GeV. The data are analysed in two categories: a merged category where the photons from the $a$ decay are reconstructed in the ATLAS calorimeter as a single cluster, and a resolved category in which two separate photons are detected. The main background processes are from Standard Model $Z$ boson production in association with photons or jets. The data are in agreement with the background predictions, and upper limits on the branching ratio of the Higgs boson decay to $Za$ times the branching ratio $a\to\gamma\gamma$ are derived at the 95% confidence level and they range from 0.08% to 2% depending on the mass of the $a$ particle. The results are also interpreted in the context of ALP models.
A search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Hadronic decays of the t quark and the H or Z boson are reconstructed from the kinematic properties of jets, including those containing b hadrons. No deviation from the standard model prediction is observed in the reconstructed tH and tZ invariant mass distributions. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV.
The first measurement of pseudorapidity and azimuthal angle distributions relative to the momentum vector of a Z boson for low transverse momentum ($p_\mathrm{T}$) charged hadrons in lead-lead (PbPb) collisions is presented. By studying the hadrons produced in an event with a high-$p_\mathrm{T}$ Z boson (40 $\lt$$p_\mathrm{T}$$\lt$ 350 GeV), the analysis probes how the quark-gluon plasma (QGP) medium created in these collisions affects the parton recoiling opposite to the Z boson. Utilizing PbPb data at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}$ = 5.02 TeV from 2018 with an integrated luminosity of 1.67 nb$^{-1}$ and proton-proton (pp) data at the same energy from 2017 with 301 pb$^{-1}$, the distributions are examined in bins of charged-hadron $p_\mathrm{T}$. A significant modification of the distributions for charged hadrons in the range 1$\lt$$p_\mathrm{T}$$\lt$ 2 GeV in PbPb collisions is observed when compared to reference measurements from pp collisions. The data provide new information about the correlation between hard and soft particles in heavy ion collisions, which can be used to test predictions of various jet quenching models. The results are consistent with expectations of a hydrodynamic wake created when the QGP is depleted of energy by the parton propagating through it. Based on comparisons of PbPb data with pp references and predictions from theoretical models, this Letter presents the first evidence of medium-recoil and medium-hole effects caused by a hard probe.
A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.
This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.
The first observation of electroweak production of a photon in association with two forward jets in proton-proton collisions is presented. The measurement uses data recorded by the CMS experiment at the LHC during 2016$-$2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis is performed in a region enriched in photon production via vector boson fusion, with a requirement on the transverse momentum of the photon to exceed 200 GeV. The cross section is measured to be 202$^{+36}_{-32}$ fb, at a significance with respect to the null hypothesis that exceeds five standard deviations. This is in agreement with the standard model prediction of 177$^{+13}_{-12}$ fb. Differential cross sections are measured as a function of various observables. Limits are set on dimension-6 effective field theory operators that contribute to the WW$γ$ interaction. The observed 95% confidence intervals for the corresponding Warsaw basis Wilson coefficients $c_\mathrm{W}$ and $c_\mathrm{HWB}$ are [$-$0.11, 0.16] and [$-$1.6, 1.5], respectively.