Showing 10 of 222 results
Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200 GeV.
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 11.5 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 14.5 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 54.4 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 62.4 GeV.
$\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200 GeV.
The scaling index, $\beta_{q}$ ($q=$ 3-6), as a function of $q-1$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV.
The scaling exponent ($\nu$), as a function of average number of participant nucleons ($\langle N_{part}\rangle$), in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6-200 GeV. The data with the largest number of $\langle N_{part}\rangle$ correspond to the most central collisions (0-5\%), and the rest of the points are for 5-10\%, 10-20\%, 20-30\% and 30-40\% centrality, respectively. The numbers of $\langle N_{part}\rangle$ at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 are: 338,289,225,158,108. The numbers of $\langle N_{part}\rangle$ at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV are: 343,299,234,166,114. The numbers of $\langle N_{part}\rangle$ at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV are: 342,294,230,162,111. The numbers of $\langle N_{part}\rangle$ at $\sqrt{s_\mathrm{_{NN}}}$ = 54.4 GeV are: 346,292,228,161,111. The numbers of $\langle N_{part}\rangle$ at $\sqrt{s_\mathrm{_{NN}}}$ = 62.4 GeV are 347,294,230,164,114. The numbers of $\langle N_{part}\rangle$ at $\sqrt{s_\mathrm{_{NN}}}$ = 200 GeV are:351,299,234,168,117.
Collision energy dependence of the scaling exponent in the 0-10% and 10-40% centrality collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 11.5 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 14.5 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 54.4 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 62.4 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200 GeV.
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 11.5 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 14.5 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 54.4 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 62.4 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200 GeV
Efficiency corrected and uncorrected $\Delta F_{2}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV
Efficiency corrected and uncorrected $\Delta F_{3}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV
Efficiency corrected and uncorrected $\Delta F_{4}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV
Efficiency corrected and uncorrected $\Delta F_{5}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV
Efficiency corrected and uncorrected $\Delta F_{6}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 5-10\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 10-20\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 20-30\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 30-40\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 0-5% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 5-10% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 10-20% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 20-30% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV
$\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 30-40% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV
We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 60-80%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV (Multiplicity class 0-10%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV (Multiplicity class 10-20%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV (Multiplicity class 20-30%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV (Multiplicity class 30-40%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV (Multiplicity class 40-60%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV (Multiplicity class 60-80%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV (Multiplicity class 0-10%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV (Multiplicity class 10-20%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV (Multiplicity class 20-30%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV (Multiplicity class 30-40%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV (Multiplicity class 40-60%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV (Multiplicity class 60-80%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV (Multiplicity class 0-10%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV (Multiplicity class 10-20%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV (Multiplicity class 20-30%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV (Multiplicity class 30-40%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV (Multiplicity class 40-60%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV (Multiplicity class 60-80%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV (Multiplicity class 0-10%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV (Multiplicity class 10-20%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV (Multiplicity class 20-30%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV (Multiplicity class 30-40%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV (Multiplicity class 40-60%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV (Multiplicity class 60-80%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV (Multiplicity class 0-10%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV (Multiplicity class 10-20%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV (Multiplicity class 20-30%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV (Multiplicity class 30-40%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV (Multiplicity class 40-60%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV (Multiplicity class 60-80%).
$p_{\mathrm T}$- integrated yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$p_{\mathrm T}$- integrated yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$p_{\mathrm T}$- integrated yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$p_{\mathrm T}$- integrated yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$p_{\mathrm T}$- integrated yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$p_{\mathrm T}$- integrated yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
<$p_{\mathrm T}$> of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
<$p_{\mathrm T}$> of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
<$p_{\mathrm T}$> of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
<$p_{\mathrm T}$> of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
<$p_{\mathrm T}$> of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
<$p_{\mathrm T}$> of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. $<(dN_{ch}/dy)^{1/3}>$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. $<(dN_{ch}/dy)^{1/3}>$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~11.5 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. $<(dN_{ch}/dy)^{1/3}>$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. $<(dN_{ch}/dy)^{1/3}>$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. $<(dN_{ch}/dy)^{1/3}>$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}}{K^{+} + K^{-}}$ vs. $<(dN_{ch}/dy)^{1/3}>$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV. Total systematic error is the quadrature sum of the correlated and uncorrelated systematic errors
$\frac{2\phi}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV
$\frac{2\phi}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV
$\frac{2\phi}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV
$\frac{2\phi}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV
$\frac{2\phi}{K^{+} + K^{-}}$ vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$11.5 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$14.5 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$27 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$39 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$62.4 GeV
lower limit of hadronic phase lifetime vs. < Npart > in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$200 GeV
We report the triton ($t$) production in mid-rapidity ($|y| <$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity ($dN_{ch}/d\eta$) and follows a scaling behavior. The $dN_{ch}/d\eta$ dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0%-10% most central collisions at 19.6 and 27 GeV, with a significance of 2.3$\sigma$ and 3.4$\sigma$, respectively, giving a combined significance of 4.1$\sigma$. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller $p_{T}$ acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed.
Invariant yields of tritons at 7.7 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 11.5 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 14.5 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 19.6 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 27 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 39 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 54.4 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 62.4 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Invariant yields of tritons at 200 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.
Triton integral dN/dy in Au+Au collisions at SQRT(s_NN) = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, 200 GeV, all centrality
Invariant yields of inclusive proton at 54.4 GeV with DCA < 3 cm, all centralities
Inclusive proton integral dN/dy in Au+Au collisions at SQRT(s_NN) = 54.4 GeV, with DCA < 3 cm.
Invariant yields of deuteron at 54.4 GeV, all centralities
Deuteron integral dN/dy in Au+Au collisions at SQRT(s_NN) = 54.4 GeV, all centrality
Particle yield ratios at 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV, 0%-10% centrality
Charged-particle multiplicity (dN_{ch}/d\eta) of light nuclei yield ratio, all centralities
Collision energy, centrality, and p_{T} dependence of light nuclei yield, 0%-10% and 40%-80% centrality
Invariant p_{T} spectra of primordial protons in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV at 0-60% centrality
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 7.7 GeV at 60-80% centrality
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 11.5 GeV, all centrality
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 14.5 GeV
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 19.6 GeV
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 27 GeV
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 39 GeV
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 54.4 GeV
Invariant p_{T} spectra of primordial protons in Au+Au collisions at SQRT(s_NN) = 62.4 GeV
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 7.7 GeV at 0-60% centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 7.7 GeV at 60-80% centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 11.5 GeV at 0-40% centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 11.5 GeV at 40-80% centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 14.5 GeV, all centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 19.6 GeV, all centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 27 GeV, all centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 39 GeV, all centrality
Invariant p_{T} spectra of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 62.4 GeV, all centrality
Integral yields dN/dy of primordial protons in Au+Au collisions at SQRT(s_NN) = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 200, all centrality
Integral yields dN/dy of primordial antiprotons in Au+Au collisions at SQRT(s_NN) = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 200, all centrality
Integral yields dN/dy of primordial protons and antiprotons in Au+Au collisions at SQRT(s_NN) = 62.4, all centrality
Proton feed-down fraction in Au+Au collisions at SQRT(s_NN) = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 200, all centrality
Antiproton weak decay feed-down fraction in Au+Au collisions at SQRT(s_NN) = 7.7, 11.5, 14.5, 19.6, 27, 39, all centrality
Protons and antiprotons weak decay feed-down fraction in Au+Au collisions at SQRT(s_NN) = 62.4, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 27 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV, all centrality
Fraction of the measured and extrapolated yield for primordial proton in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 27 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV, all centrality
Fraction of the measured and extrapolated yield for deuteron in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 27 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV, all centrality
Fraction of the measured and extrapolated yield for triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, all centrality
We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.
The measured $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H lifetimes from STAR (2021)
B.R. times dN/dy of $^{3}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions
B.R. times dN/dy of $^{4}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions
B.R. times dN/dy of $^{3}_{\Lambda}$H vs y in 3 GeV 10-50% Au+Au collisions
B.R. times dN/dy of $^{4}_{\Lambda}$H vs y in 3 GeV 10-50% Au+Au collisions
B.R. times dN/dy at |y|<0.5 of $^{3}_{\Lambda}$H vs B.R in 3 GeV 0-10% Au+Au collisions
B.R. times dN/dy at |y|<0.5 of $^{4}_{\Lambda}$H vs B.R in 3 GeV 0-10% Au+Au collisions
$^{3}_{\Lambda}$H $p_T$ spectra times B.R., -0.25<y<0, Au+Au 3 GeV, 0-10%
$^{3}_{\Lambda}$H $p_T$ spectra times B.R., -0.5<y<-0.25, Au+Au 3 GeV, 0-10%
$^{3}_{\Lambda}$H $p_T$ spectra times B.R., -0.25<y<0, Au+Au 3 GeV, 10-50%
$^{3}_{\Lambda}$H $p_T$ spectra times B.R., -0.5<y<-0.25, Au+Au 3 GeV, 10-50%
$^{4}_{\Lambda}$H $p_T$ spectra times B.R., -0.25<y<0, Au+Au 3 GeV, 0-10%
$^{4}_{\Lambda}$H $p_T$ spectra times B.R., -0.5<y<-0.25, Au+Au 3 GeV, 0-10%
$^{4}_{\Lambda}$H $p_T$ spectra times B.R., -0.75<y<-0.5, Au+Au 3 GeV, 0-10%
$^{4}_{\Lambda}$H $p_T$ spectra times B.R., -0.25<y<0, Au+Au 3 GeV, 10-50%
$^{4}_{\Lambda}$H $p_T$ spectra times B.R., -0.5<y<-0.25, Au+Au 3 GeV, 10-50%
$^{4}_{\Lambda}$H $p_T$ spectra times B.R., -0.75<y<-0.5, Au+Au 3 GeV, 10-50%
We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $\kappa_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $\kappa_n$ are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, $y$, and transverse momentum, $p_{T}$. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity ($|y| <$ 0.5) and transverse momentum 0.4 $<$$p_{\rm T}$$<$ 2.0 GeV/$c$, using the STAR detector at RHIC. We observe a non-monotonic energy dependence ($\sqrt{s_{\mathrm {NN}}}$ = 7.7 -- 62.4 GeV) of the net-proton $C_{4}$/$C_{2}$ with the significance of 3.1$\sigma$ for the 0-5% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with $\sqrt{s_{\mathrm {NN}}}$. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, $\kappa_2$, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, $\kappa_4$, of protons plays a role in determining the energy dependence of proton $C_4/C_1$ below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$\Delta N_\mathrm{p}$ multiplicity distributions in Au+Au collisions at various $\sqrt{s_\text{NN}}$ for 0-5%, ...
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $N_{part}$.
$C_{n}$ of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $N_{part}$.
$\kappa\sigma^2$ as a function of collision energy for Au+Au collisions for 0-5% centrality.
Efficiency uncorrected $C_n$ of net-proton proton and anti-proton multiplicity distribution in Au+Au collisions at $\sqrt{s_\text{NN}}$ = 7.7 - 200 GeV as function of $\left\langle N_\text{part} \right\rangle$.
Efficiencies of proton and anti-proton as a function of $p_\mathrm{T}$ in Au+Au collisions for various $\sqrt{s_\text{NN}}$ and collision centralities.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Distribution of reconstructed protons from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Unfolded net-proton multiplicity distributions for $\sqrt{s_{NN}$ = 200 GeV Au+Au collisions.
Unfolded net-proton multiplicity distributions for $\sqrt{s_{NN}$ = 200 GeV Au+Au collisions.
Unfolded net-proton multiplicity distributions for $\sqrt{s_{NN}$ = 200 GeV Au+Au collisions.
Unfolded net-proton multiplicity distributions for $\sqrt{s_{NN}$ = 200 GeV Au+Au collisions.
Unfolded net-proton multiplicity distributions for $\sqrt{s_{NN}$ = 200 GeV Au+Au collisions.
Unfolded net-proton multiplicity distributions for $\sqrt{s_{NN}$ = 200 GeV Au+Au collisions.
Unfolded net-proton multiplicity distributions for $\sqrt{s_{NN}$ = 200 GeV Au+Au collisions.
Cumulant ratios as a function of $N_{part}$ for net-proton distributions in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Cumulant ratios as a function of $N_{part}$ for net-proton distributions in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Collision centrality dependence of proton, anti-proton and net-proton cumulants
Cumulants and their ratios as a function of $<N_{part}>$, for the net-proton distribution
Centrality dependence of normalized correlation functions $\kappa_n/$kappa_1$ for proton and anti-proton multiplicity distribution
Rapidity acceptance dependence of cumulants of proton, anti-proton and net-proton multiplicity distributions in 0-5% central Au+Au collision ...
Rapidity acceptance dependence of normalized correlation functions up to fourth order.
Rapidity-acceptance dependence of cumulant ratios of proton, anti-proton and net-proton multiplicity distributions in 0-5% central Au+Au collisions...
pT-acceptance dependence of cumulants of proton, anti-proton and net-proton multiplicity distributions for 0-5% central Au+Au collisions ...
pT-acceptance dependence of the normalized correlation functions up to fourth order ($\kappa_n/\kappa_1$, $n$ = 2, 3, 4) for proton and anti-proton multiplicity distributions in 0-5% central Au+Au collisions ...
pT-acceptance dependence of cumulant ratios of proton, anti-proton and net-proton multiplicity distributions for 0-5% central Au+Au collisions ...
Cumulant ratios from HRG model as a function of collision energy $\sqrt{s_{NN}}$
UrQMD results on pT acceptance dependence for cumulant ratios for proton and baryon
Polynomial fit of cumulant ratios as a function of collision energy $\sqrt{s_{NN}}$
Polynomial fit of cumulant ratios as a function of collision energy $\sqrt{s_{NN}}$
Polynomial fit of cumulant ratios as a function of collision energy $\sqrt{s_{NN}}$
Collision energy dependence of $C_2/C_1$, $C_3/C_2$ and $C_4/C_2$ for net-proton multiplicity distribution in 0-5% central Au+Au collisions. The expreimental net-proton measurements are compared to corresponding values from UrQMD and HRG models within the expreimental acceptances.
Collision energy dependence of $C_2/C_1$, $C_3/C_2$ and $C_4/C_2$ for net-proton multiplicity distribution in 0-5% central Au+Au collisions. The expreimental net-proton measurements are compared to corresponding values from UrQMD and HRG models within the expreimental acceptances.
Collision energy dependence of $C_2/C_1$, $C_3/C_2$ and $C_4/C_2$ for net-proton multiplicity distribution in 0-5% central Au+Au collisions. The expreimental net-proton measurements are compared to corresponding values from UrQMD and HRG models within the expreimental acceptances.
Collision energy dependence of $C_2/C_1$, $C_3/C_2$ and $C_4/C_2$ for net-proton multiplicity distribution in 0-5% central Au+Au collisions. The expreimental net-proton measurements are compared to corresponding values from UrQMD and HRG models within the expreimental acceptances.
Collision energy dependence of $C_2/C_1$, $C_3/C_2$ and $C_4/C_2$ for net-proton multiplicity distribution in 0-5% central Au+Au collisions. The expreimental net-proton measurements are compared to corresponding values from UrQMD and HRG models within the expreimental acceptances.
Collision energy dependence of $C_2/C_1$, $C_3/C_2$ and $C_4/C_2$ for net-proton multiplicity distribution in 0-5% central Au+Au collisions. The expreimental net-proton measurements are compared to corresponding values from UrQMD and HRG models within the expreimental acceptances.
Collision energy dependence of $C_2/C_1$, $C_3/C_2$ and $C_4/C_2$ for net-proton multiplicity distribution in 0-5% central Au+Au collisions. The expreimental net-proton measurements are compared to corresponding values from UrQMD and HRG models within the expreimental acceptances.
The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.
K+/PI+ at y=0.
K+/PI+ at y=0.
<K+>/<PI+>.
<K+>/<PI>+.
Inverse slope parameter T.
Inverse slope parameter T.
Inverse slope parameter T.
Inverse slope parameter T.
K-/PI- at y=0.
K-/PI- at y=0.
<K->/<PI->.
<K->/<PI->.
We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.
The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend
The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $\pi^{-}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $K^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $K^{-}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
Average $p_{T}$ of $\pi^{+}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of $\pi^{-}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of $K^{+}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of $K^{-}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$= 14.5 GeV.
Average $p_{T}$ of p as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of p-bar as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $\pi^{+}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $\pi^{-}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $K^{+}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $K^{-}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of proton scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of p-bar scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Kinetic freeze-out temperature as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Velocity as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
The event plane resolution calculated for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV as a function of centrality.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$ for 10-20% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$ for 20-30% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$ for 30-40% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of transverse momentum $p_{T}$ for six centrality classes, obtained using the $\eta$-sub event plane method in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$-integrated v2($\eta$) for six centrality classes, obtained using the $\eta$-sub event plane method in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
The ratio inclusive charged particle elliptic flow v2 over root-mean-square participant eccentricity $Epart_{2}$ at mid-pseudorapidity as a function of $p_{T}$ for 10–20%, 30–40%, and 50–60% collision centralities in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Summary of centrality bins, average number of participants $N_{part}$, number of binary collisions $N_{coll}$, reaction plane eccentricity eRP, participant eccentricity epart, root-mean-square of the participant eccentricity epart{2}, and transverse area $S_{part}$ from MC Glauber simulations at $\sqrt{s_{NN}}$ = 14.5 GeV.
The inclusive charged particle elliptic flow v2($\eta$-sub) versus pseudorapidity $\eta$ at mid-pseudorapidity for $\sqrt{s_{NN}}$ = 14.5 GeV.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 27.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 39.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 27.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 39.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 – 39 GeV for 30-60% centrality intervals.
The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 7.7 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 11.5 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 14.5 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 19.6 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 27 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 39 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 64.2 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 200 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 7.7 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 11.5 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 14.5 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 19.6 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 27 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 39 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 64.2 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 200 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 7.7 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 11.5 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 14.5 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 19.6 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 27 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 39 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 64.2 GeV
Angular correlation function R2(∆y,∆φ) of like-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 200 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 7.7 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 11.5 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 14.5 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 19.6 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 27 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 39 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 64.2 GeV
Angular correlation function R2(∆y,∆φ) of unlike-sign protons in Au+Au collisions at mid centrality 30%-40% and 0.4 < pT < 2.0 GeV/c at 200 GeV
Angular correlation function R2(∆y,∆φ) of like- sign kaons in Au+Au collisions at 200 GeV, mid centrality 30%-40% and 0.2 < pT < 1.6 GeV/c
Angular correlation function R2(∆y,∆φ) of unlike-sign kaons in Au+Au collisions at 200 GeV, mid centrality 30%-40% and 0.2 < pT < 1.6 GeV/c.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) pions in Au+Au collisions at 30%-40% centrality and eight different energies from 7.7 GeV (top left) to 200 GeV (bottom right). Also shown at the highest beam energies in the right frames are the antiproton-antiproton correlations.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) protons in Au+Au collisions at 30%-40% centrality and eight different energies from 7.7 GeV (top left) to 200 GeV (bottom right). Also shown at the highest beam energies in the right frames are the antiproton-antiproton correlations.
Near-side and away-side ⟨R2(∆y)⟩ projection of like-sign (red) and unlike-sign (blue) pions in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom), 30%-40% centrality.
Near-side and away-side ⟨R2(∆y)⟩ projection of like-sign (red) and unlike-sign (blue) protons in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom), 30%-40% centrality.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) pions in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom), 30%-40% centrality compared with the UrQMD (solid line), Hijing (dash-dotted line), and AMPT (dotted line) simulations.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) protons in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom), 30%-40% centrality compared with the UrQMD (solid line), Hijing (dash-dotted line), and AMPT (dotted line) simulations.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) pions in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom) for the most central 0%-5%, mid-central 30%-40% and pe- ripheral 60%-70% events.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) protons in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom) for the most central 0%-5%, mid-central 30%-40% and pe- ripheral 60%-70% events.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) pions in low and high pT in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom) in 30%-40% centrality.
Projection of correlation function ⟨R2(∆y)⟩ of like-sign (red) and unlike-sign (blue) protons in low and high pT in Au+Au collisions at 14.5 GeV (top) and 62.4 GeV (bottom) in 30%-40% centrality.
We present STAR measurements of strange hadron ($\mathrm{K}^{0}_{\mathrm S}$, $\Lambda$, $\overline{\Lambda}$, $\Xi^-$, $\overline{\Xi}^+$, $\Omega^-$, $\overline{\Omega}^+$, and $\phi$) production at mid-rapidity ($|y| < 0.5$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 7.7 - 39 GeV from the Beam Energy Scan Program at the Relativistic Heavy Ion Collider (RHIC). Transverse momentum spectra, averaged transverse mass, and the overall integrated yields of these strange hadrons are presented versus the centrality and collision energy. Antibaryon-to-baryon ratios ($\overline{\Lambda}$/$\Lambda$, $\overline{\Xi}^+$/$\Xi^-$, $\overline{\Omega}^+$/$\Omega^-$) are presented as well, and used to test a thermal statistical model and to extract the temperature normalized strangeness and baryon chemical potentials at hadronic freeze-out ($\mu_{B}/T_{\rm ch}$ and $\mu_{S}/T_{\rm ch}$) in central collisions. Strange baryon-to-pion ratios are compared to various model predictions in central collisions for all energies. The nuclear modification factors ($R_{\textrm{CP}}$) and antibaryon-to-meson ratios as a function of transverse momentum are presented for all collision energies. The $\mathrm{K}^{0}_{\mathrm S}$$R_{\textrm{CP}}$ shows no suppression for $p_{\rm T}$ up to 3.5 $\mathrm{GeV} / c$ at energies of 7.7 and 11.5 GeV. The $\overline{\Lambda}$/$\mathrm{K}^{0}_{\mathrm S}$ ratio also shows baryon-to-meson enhancement at intermediate $p_{\rm T}$ ($\approx$2.5 $\mathrm{GeV} / c$) in central collisions at energies above 19.6 GeV. Both observations suggest that there is likely a change of the underlying strange quark dynamics at collision energies below 19.6 GeV.
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)
We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $\sqrt{s_\text{NN}} =\ $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $\sqrt{s_\text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $\sqrt{s_\text{NN}}=\ $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'transverse momentum spectra for anti-deuterons in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of $<p_{T}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of deuterons (top panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Centrality dependence of dN/dy normalized by 0.5$<N_{part}>$ of anti-deuterons (bottom panel) in Au+Au collisions'
'Energy dependence of $\bar{d}/d$ ratios from Au+Au collisions at RHIC'
'Energy dependence of $d/p$ yield ratios'
'Energy dependence of $\bar{d}/\bar{p}$ yield ratios'
'Energy dependence of $d/p^{2}$ yield ratios (top panel)'
'Energy dependence of $\bar{d}/\bar{p}^{2}$ yield ratios (top panel)'
'Coalescence parameter $B_{2}$ as a function of $m_{T}$ $-$ $m_{0}$ for deuterons (left panel)'
'Coalescence parameter $B_{2}$ as a function of $m_{T}$ $-$ $m_{0}$ for anti-deuterons (right panel)'
'Energy dependence of the coalescence parameter for $B_{2}(d)$'
'Energy dependence of the coalescence parameter for $B_{2}(\bar{d})$'
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.