Showing 2 of 132 results
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
The effective mass distribution in VR2Z.
The ETmiss distribution in SR0noZa.
The effective mass distribution in SR0noZa.
The ETmiss distribution in SR1noZa.
The effective mass distribution in SR1noZa.
The ETmiss distribution in SR2noZa.
The effective mass distribution in SR2noZa.
The ETmiss distribution in SR0noZb.
The effective mass distribution in SR0noZb.
The ETmiss distribution in SR1noZb.
The effective mass distribution in SR1noZb.
The ETmiss distribution in SR2noZb.
The effective mass distribution in SR2noZb.
The ETmiss distribution in SR0Z.
The effective mass distribution in SR0Z.
The ETmiss distribution in SR1Z.
The effective mass distribution in SR1Z.
The ETmiss distribution in SR2Z.
The effective mass distribution in SR2Z.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the R-slepton RPC model.
Expected 95% CL exclusion contour for the R-slepton RPC model.
Observed and expected 95% CL cross-section upper limits for the Stau RPC model, together with the theoretically predicted cross-section.
Observed and expected 95% CL cross-section upper limits for the Z RPC model, together with the theoretically predicted cross-section.
Observed 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Expected 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Observed 95% CL exclusion contour for the GGM tan beta = 30 model.
Expected 95% CL exclusion contour for the GGM tan beta = 30 model.
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the R-slepton RPC model, and the selection of Z-veto signal regions used to set limits in this model. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bbb' means that the regions SR0noZb, SR1noZb and SR2noZb were used, in addition to the three Z-rich regions (SR0-2Z). For the RPC stau and Z models, the ``aaa' combination of regions was used throughout.
Performance of the SR0noZa selection in the R-slepton RPC model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0noZb selection in the RPV chargino NLSP model with lambda_121 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0Z selection in the GGM tan beta = 30 model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Cut flows for a representative selection of SUSY signal points in the Z-veto signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows for a representative selection of SUSY signal points in the Z-rich signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses (or the value of mu in the case of GGM models). The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0noZa signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPC R-slepton model is used, with (m2,m1) = (450,300) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR1noZb signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPV gluino NLSP model is used, with lambda_133 != 0 and (m2,m1) = (800,400) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0Z signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the value of mu. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The GGM tan beta = 30 model is used, with (m2,m1) = (200,1000) GeV.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.
Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.
Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L low for each bin of the distribution in Meff. The table corresponds to Fig. 4(d). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L high for each bin of the distribution in Meff. The table corresponds to Fig. 4(e). The statistical and systematic uncertainties are combined for the predicted numbers.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The efficiencies are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The efficiencies are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The efficiencies are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into b s and gluinos decay into t stop (see Fig. 5d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The efficiencies are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The acceptances (in percent, %) are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The acceptances (in percent, %) are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The acceptances (in percent, %) are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The acceptances (in percent, %) are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The limits on observed cross section are calculated for all simplified models. The simplified models are for direct pair production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop)-20 GeV.
The signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Experimental uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Experimental uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Experimental uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Statistical uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Statistical uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Statistical uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W ^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The confidence levels are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluion), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The confidence levels are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the expected and observed values are given. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The confidence levels are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The confidence levels are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the expected and observed values are given.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The confidence levels are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, and mu>0.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.