The first measurement of the neutron electromagnetic form factors in the timelike region.

Antonelli, A. ; Baldini, R. ; Benasi, P. ; et al.
Nucl.Phys.B 517 (1998) 3-35, 1998.
Inspire Record 471263 DOI 10.17182/hepdata.32681

The electromagnetic form factors of the neutron in the time-like region have been measured for the first time, from the threshold up to q 2 ⋟ 6 GeV 2 . The neutron magnetic form factor turns out to be larger than the proton one; the angular distribution suggests that for the neutron, at variance with the proton case, electric and magnetic form factors could be different. Further measurements are also reported, concerning the proton form factors and the Σ Σ production, together with the multihadronic cross section and the J / Γ branching ratio into n n .

3 data tables

The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The SQRT(S) values with (C=NOMIN) and (C=SHIFT) correspond to the nominal energy and shifted energy analysis (see text of paper for details).

The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The NEUTRON formfactor value are calculated in two hypotheses: GE = GM and GE = 0.

The uncertainty on the evaluated cross section is given by the quadratic combination of the statistical and systematic uncertainties.


Measurement of the total e+ e- ---> hadrons cross-section near the e+ e- ---> N anti-N threshold

The FENICE collaboration Antonelli, A. ; Baldini, R. ; Bertani, M. ; et al.
Phys.Lett.B 365 (1996) 427-430, 1996.
Inspire Record 426675 DOI 10.17182/hepdata.37900

A new measurement of the total e + e − → hadrons cross-section in the centre of mass energy range 1.8-2.5 GeV, performed by the FENICE experiment at the Frascati e + e − storage ring ADONE, is presented. The behaviour of the total cross section together with the proton electromagnetic time-like form factor is discussed in terms of a narrow vector resonance close to the nucleon-antinucleon threshold.

1 data table

Only statistical errors are quoted.


Measurement of the electromagnetic form-factor of the proton in the timelike region

Antonelli, A. ; Baldini, R. ; Bertani, M. ; et al.
Phys.Lett.B 334 (1994) 431-434, 1994.
Inspire Record 377833 DOI 10.17182/hepdata.28572

The cross section for the process e + e − → p p has been measured in the s range 3.6–5.9 GeV 2 by the FENICE experiment at the e + e − Adone storage ring and the proton electromagnetic form factor has been extracted.

2 data tables

Cross section measurement.

Proton form-factor measurement.


First measurement of the neutron electromagnetic form-factor in the timelike region

Antonelli, A. ; Baldini, R. ; Bertani, M. ; et al.
Phys.Lett.B 313 (1993) 283-287, 1993.
Inspire Record 359376 DOI 10.17182/hepdata.28867

The first measurement of the neutron form factor in the time-like region has been performed by the FENICE experiment at the ADONE e + e − storage ring. Results at q 2 = 4.0 and 4.4 (GeV/ c ) 2 , together with a new measurement of the proton form factor are presented here.

2 data tables

Neutron form factor and cross section.

Preliminary analysis of proton form factor and cross section.


Measurement of the e+ e- ---> pi+ pi- pi0 and e+ e- ---> omega pi+ pi- reactions in the energy interval 1350-MeV - 2400-MeV

The DM2 collaboration Antonelli, A. ; Baldini, R. ; Biagini, M.E. ; et al.
Z.Phys.C 56 (1992) 15-20, 1992.
Inspire Record 339265 DOI 10.17182/hepdata.14555

The cross sections fore+e−→π+π−π0 ande+e−→ωπ+π− have been measured in the 1.35 ≦\(\sqrt s \) ≦2.4 GeV range from 1900 nb−1 collected by DM2 at DCI. The second process proceeds via a resonant state at ≈- 1660 MeV/c2, ≈- 280 MeV/c2 wide. The first one is larger than a VDM extrapolation from the ω-ϕ peaks and, although does not show any clear structure, is compatible with the presence of the above resonance.

2 data tables

No description provided.

No description provided.


Observation of an isoscalar vector meson at approximately = 1650-MeV/c**2 in the e+ e- ---> K anti-K pi reaction

Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Z.Phys.C 52 (1991) 227-230, 1991.
Inspire Record 318558 DOI 10.17182/hepdata.14928

The\(e^ +e^ -\to K_s^0 K^ \pm\pi ^ \mp\) andK+K−π0 cross sections have been measured in the energy interval\(1350 \leqq \sqrt s\leqq 2400\) with the DM2 detector at DCI. The\(K_s^0 K^ \pm\pi ^ \mp\) cross section shows the contribution of an isoscalar vector meson at ≈1650 MeV/c2 in agreement with a previous experiment. The low statisticsK+K−π0 measurement is consistent with the above result.

2 data tables

The K0S K+- PI-+ cross section.

The K+ K- PI0 cross section.


Baryon pair production in e+ e- annihilation at S**(1/2) = 2.4-GeV

The DM2 collaboration Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Z.Phys.C 48 (1990) 23-28, 1990.
Inspire Record 297706 DOI 10.17182/hepdata.15128

Search for baryon pairs production ine+e− annihilation at\(\sqrt s= 2386 MeV\) is reported. The data relate to a luminosity of 161 nb−1 collected by the DM2 experiment at DCI, the Orsay colliding ring. First measurements of directe+e− annihilation into\(\Lambda \bar \Lambda \) and ofe+e−→\(p\bar p\) at this energy are presented. First observation of a goode+e−→\(n\bar n\) candidate is reported and upper limits are given fore+e−→\(n\bar n, \Lambda \bar \sum ^0+ c.c.\) and\(\Sigma ^0 \bar \Sigma ^0 \).

5 data tables

No description provided.

No description provided.

No description provided.

More…