We have measured with good statistics the differential cross section for p p →π + π − , K + K − around 0°. Our data and previous results show that the s -dependence of dσ/d t has a value compatible with the appropriate baryon exchange.
No description provided.
No description provided.
No description provided.
None
No description provided.
The differential cross section for π−−p elastic scattering has been measured at 13.8 and 22.6 GeV/c up to −t=5 (GeV/c)2. The dips in the angular distribution at −t≈0.8 and 2.8 (GeV/c)2 previously observed at lower momenta become less prominent at higher momentum. The −t=2.8 (GeV/c)2 dip is still observed at 13.8 GeV/c, but at 22.6 GeV/c it has become a sharp kink in the angular distribution. At large momentum transfers, dσdt at fixed t is still decreasing with increasing s, but at a slower rate in the 14- to 23-GeV/c region than at lower momenta.
No description provided.
No description provided.
Differential cross sections for π±p, K±p, pp, and p¯p elastic scattering were measured at 3, 3.65, 5, and 6 GeVc for momentum transfers from 0.03 to 1.5 GeV2 using the Argonne effective mass spectrometer. Particular attention was paid to the relative particle-antiparticle normalization. The crossover points are consistent with no energy dependence, average values being 0.14 ± 0.03, 1.190 ± 0.005, and 0.160 ± 0.007 GeV2 for π's, K's, and protons, respectively.
No description provided.
The differential cross section for π+p elastic scattering has been measured at 13.8 GeVc for 0.7<|t|<3.8(GeVc)2. The cross section is found to be equal to that previously obtained for π−p elastic scattering, except in the region |t|=2.8 (GeVc)2, where the π+p data do not show the prominent dip observed in π−p scattering. Data have also been obtained for 13.8−GeVc K+p elastic scattering for 0.8<|t|<2.2 (GeVc)2.
No description provided.
No description provided.
Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
Reactions p p → p p and p p → n n were studied at the kinetic energy 230 MeV of incident p by using bubble chamber films. Total cross sections for both of the reactions were found to be 51.2 ± 1.6 mb and 9.1 ± 0.6 mb, respectively. Differential cross sections are well explained by the phenomenological theory given by Bryan and Phillips.
No description provided.
No description provided.
No description provided.
Differential cross sections and density matrix elements are presented for K ∗− (890) and K ∗− (1400) produced in the reaction K − p→K O π − p at 3.95 GeV/ c . The cross sections are decomposed into contributions due to different exchange mechanisms.
No description provided.
No description provided.
No description provided.
Measurements of proton-deuteron scattering have been performed using an incident 24.0 GeV/ c proton beam. Momentum-loss spectra of forward-scattered protons were measured by a single-arm spectrometer over a range of proton angles from 13 to 107 mr. The contributions to the proton spectra of single and double scattering can be separated experimentally, thus allowing estimates of proton-neutron elastic cross sections to be deduced from the data over a range of four-momentum transfer squared, |t| 5.8 GeV 2 . Elastic p - d scattering, in which the proton and deuteron were detected in coincidence, has also been measured over a range of | t | from 0.6 to 1.8 GeV 2 .
No description provided.
EXTRACTED FROM SINGLE AND DOUBLE PEAK DEUTERIUM DATA BY THE GLAUBER METHOD WITH FERMI MOTION CORRECTIONS.
The reaction K − d → K − π + π − n p s was studied in a bubble chamber experiment. The cross section was measured to be 1.3 ± 0.2 mb. The final state is dominated by K ∗0 (890) , K ∗0 (1420) and Δ − (1236) production. Partial cross sections, differential cross sections and decay angular distributions of the K ∗0 (890) δ − (1236) final state were found to give good agreement with the predictions of Białas and Zalewski obtained from the quark model. The final state K − π + Δ − (1236) is analyzed by use of the Van Hove plot.
DEUTERIUM CROSS SECTIONS WITH SPECTATOR PROTON. PROBABLY NOT CORRECTED FOR K* BRANCHING RATIO INTO <K- PI+>.
SLOPE IS 5.75 +- 0.46 GEV**2 FOR -TP < 0.4 GEV**2.
GOTTFRIED-JACKSON FRAME.