Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.
No description provided.
No description provided.
No description provided.
Total and differential cross sections for π−p elastic scattering are presented at 35 energies between 1400 and 2000 MeV.
No description provided.
No description provided.
No description provided.
Measurements of π±p backward elastic scattering have been made for incident pion momenta between 30 and 90 GeV/c and for 0<−u<0.5 (GeV/c)2. The momentum dependence of the cross sections is of a form expected from a simple Regge model, and the u dependence of the cross sections is similar to that observed at lower momenta.
No description provided.
No description provided.
No description provided.
Results are presented on the measurement of 200-GeV/c π−p elastic scattering at −t from 0.8 to 11 (GeV/c)2. As −t is increased, dσdt falls by ∼6 decades to a prominent dip at 4 (GeV/c)2, followed by a second maximum and than a slow decrease with increasing −t.
No description provided.
The differential cross section for π−−p elastic scattering has been measured at 13.8 and 22.6 GeV/c up to −t=5 (GeV/c)2. The dips in the angular distribution at −t≈0.8 and 2.8 (GeV/c)2 previously observed at lower momenta become less prominent at higher momentum. The −t=2.8 (GeV/c)2 dip is still observed at 13.8 GeV/c, but at 22.6 GeV/c it has become a sharp kink in the angular distribution. At large momentum transfers, dσdt at fixed t is still decreasing with increasing s, but at a slower rate in the 14- to 23-GeV/c region than at lower momenta.
No description provided.
No description provided.
The depolarization parameter for pp inclusive scattering at an incident momentum of 6 GeV/c was measured. The D parameter for inclusive scattering indicates the dominance of natural-parity exchange at small t, except in the case of N*(1232) production, where π exchange is more important. D for elastic scattering has also been measured. This parameter shows a small decrease from unity with increasing momentum transfer.
No description provided.
We present results from a measurement of the differential cross sections for Σ−p, Ξ−p, and π−p elastic scattering at 23 GeV/c. We have collected samples of 6200 Σ−p events, 67 Ξ−p events, and 30 000 π−p events in the interval 0.10<|t|<0.23 (GeV/c)2.
No description provided.
No description provided.
Backward elastic scattering of π± on protons has been measured for incident pion momenta between 30 and 90 GeV/c and 0≤−u≤0.5 (GeV/c)2. The u dependence of the cross sections is similar to that observed at lower momenta, and Regge models give acceptable fits to the data.
No description provided.
No description provided.
No description provided.
The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.