The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.
3-jet mass distribution.
Inclusive 3-jet Dalitz X3 distribution.
Inclusive 3-jet Dalitz X4 distribution.
This study reports the first measurement of the azimuthal decorrelation between jets with pseudorapidity separation up to five units. The data were accumulated using the D\O\ detector during the 1992--1993 collider run of the Fermilab Tevatron at $\sqrt{s}=$ 1.8 TeV. These results are compared to next--to--leading order (NLO) QCD predictions and to two leading--log approximations (LLA) where the leading--log terms are resummed to all orders in $\alpha_{\scriptscriptstyle S}$. The final state jets as predicted by NLO QCD show less azimuthal decorrelation than the data. The parton showering LLA Monte Carlo {\small HERWIG} describes the data well; an analytical LLA prediction based on BFKL resummation shows more decorrelation than the data.
Distribution of the pseudorapidity interval of the two jets at the extremes of pseudorapidity. Data are read from the graph and the errors are statistical only.
Normalized distributions of the azimuthal angle difference of the two jets at the extremes of pseudorapidity in 3 pseudorapididity difference intervals. Data are read from the graph and the errors are statistical only.
The correlation between the PHI and ETARAP difference distributions as used in the analysis.Data are read from the graph and the errors include the statiucal and un-correlated systematic errors added in quadrature.
We present a study of events with Z bosons and hadronic jets produced in $\overline{p}p$ collisions at a center-of-mass energy of 1.8 TeV. The data consist of 6708 $Z \rightarrow e~+e~-$ decays from 106 pb$~{-1}$ of integrated luminosity collected using the CDF detector at the Tevatron Collider. The Z $+ \ge n$ jet cross sections and jet production properties have been measured for n = 1 to 4. The data compare well to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.
The notation (N)JET(S) means greater than or equal to N jets. Cross sections include the branching ratio to E+ E-.
Transverse energy distribution of the first highest ET jet in >= 1jet events.. Data read from plots.
Transverse energy distribution of the second highest ET jet in >= 2jet events.. Data read from plots.
Preliminary inclusive spectra of negative hadrons, net protons and neutral strange particles are presented, measured by the NA49 experiment in central Pb+Pb collisions at 158 GeV per nucleon. Comparison of their yields with those from the lighter S+S system suggests that the yields scale approximately with the number of participating nucleons.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
Proton distributions at midrapidity have been measured for 158A·GeV Pb+Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A·GeV S+S and 158A·GeV Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter T fo and mean collective flow velocity 〈β〉 are extracted. Preliminary results of the particle ratios of K − K + and p p are discussed in the context of cascade models of RQMD and VENUS.
CENTRAL COLLISIONS: SIG(TRIG)/SIG(GEOM)=10%.
Preliminary results from WA97 measurements on Λ, Ξ and Ω production in lead-lead and proton-lead collisions are presented, along with a comparison of WA97 proton-lead data with previous WA85 proton-tungsten results. The ratio Ω gX seems to be enhanced in lead initiated reactions compared to proton initiated reactions.
No description provided.
No description provided.
PRELIMINARI DATA.
Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.
B-jets are identified with the lepton-tag analysis.
The same kinematics as in the table 1.
A measurement of inclusive charged particle distributions in deep inelastic $ep$ scattering for $\gamma~* p$ centre-of-mass energies $75< W < 175$GeV and momentum transfer squared $10< Q~2 < 160$GeV$~2$ from the ZEUS detector at HERA is presented. The differential charged particle rates in the $\gamma~* p$ centre-of-mass system as a function of the scaled longitudinal momentum, $x_F$, and of the transverse momentum, $p_t~*$ and $<\!\!p_t~{*\,2}\!\!>\,\,$ , as a function of $x_F$, $W$ and $Q~2$ are given. Separate distributions are shown for events with (LRG) and without (NRG) a rapidity gap with respect to the proton direction. The data are compared with results from experiments at lower beam energies, with the naive quark parton model and with parton models including perturbative QCD corrections. The comparison shows the importance of the higher order QCD processes. Significant differences of the inclusive charged particle rates between NRG and LRG events at the same $W$ are observed. The value of $<\!\!p_t~{*\,2}\!\!>\,\,$ for LRG events with a hadronic mass $M_X$, which excludes the forward produced baryonic system, is similar to the $<\!\!p_t~{*\,2}\!\!>\,\,$ value observed in fixed target experiments at $W \approx M_X$.
Differential multiplicites for NRG events.. XL is parallel to the virtual photon axis.
Differential multiplicites for NRG events.. PT is relative to the virtual photon axis.
Mean PT**2 for NRG events.. PT is relative to the virtual photon axis.
The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of \ee data. It is shown that certain aspects of the quarks emerging from within the proton in \ep interactions are essentially the same as those of quarks pair-created from the vacuum in \ee annihilation. The measured area, peak position and widthof the fragmentation function show that the kinematic evolution variable, equivalent to the \ee squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in parton showers.
Distribution of the cosine of the Breit frame polar angle for data with the Breit frame energy flow selection. Statistical errors only.
Distribution of the cosine of the Breit frame polar angle for data before the Breit frame energy flow selection. Statistical errors only.
The fragmentation function for the current hemisphere of the Breit frame. Data are Breit frame energy flow selected only. Statistical errors only.