The neutron-proton elastic differential cross section has been measured for incident momenta between 10 and 70 GeV/c and for values of the momentum transfer squared between 0.1 and 2.8 (GeV/c) 2 . The forward peak and the break at about ∣ t ∣ = 1 (GeV/ c ) 2 are very similar to corresponding pp data.
No description provided.
No description provided.
The differential cross sections for neutron-proton charge-exchange scattering have been measured for incident neutron momenta between 8 and 29 GeV /c and for four-momentum transfers | t | between 0.002 and 1.0 (GeV/ c ) 2 . A neutron beam with a broad momentum spectrum was scattered from a liquid hydrogen target. The momenta and scattering angles of the forward-scattered protons were measured by a spark-chamber magnet spectrometer. The flight times and scattering angles of the recoil neutrons were measured by a bank of thick scintillation counters. The efficiencies of the neutron counters were determined in a separate measurement. Absolute normalization of the data was obtained from a measurement of the diffraction dissociation of neutrons from carbon nuclei. Differential cross sections, based on ∼ 23 000 events, are presented for 9 different momenta. The shape of the differential cross sections and the momentum dependence are examined in detail.
No description provided.
No description provided.
No description provided.
The single-particle inclusive pion spectrum from the reaction p + p → π ± + anything at 28.5 GeV is presented in both tabular and graphical form. The data are from exposures in the BNL 203 cm bubble chamber. The emphasis of this paper is on exhibiting the single-particle spectra in sufficient detail so that the data will be useful to those interested in testing models and developing new concepts.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
The first direct measurements of neutron-proton and neutron-deuteron total cross sections in the momentum range 14 to 27 GeV/c are presented. The np total cross section apparently becomes less than the pp total cross section in this momentum region. Our results show no evidence for a rapid vanishing of the Glauber screening correction as predicted by Abers et al. on the basis of Regge theory.
'1'. '2'.