The total cross section for e + e − annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficiencies for photons and charged particles. The measured difference in R = σ had / σμμ between 3.6 GeV and 5.2 GeV is ΔR = 2.1 ± 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given.
EXCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
INCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
The photon total cross section on protons has been measured with high precision in the Fermilab tagged-photon beam for photon energies from 18 to 185 GeV. The cross section decreases to a broad minimum near 40 GeV, and then rises by about 4 μb over the remainder of the range. A ρ+ω+ϕ vector-dominance model (normalized to low-energy data) falls below the high-energy results by 2 to 6 μb, suggesting a contribution from charm-anticharm states.
No description provided.
No description provided.
An experiment using the PLUTO detector has observed the formation of a narrow, high mass, resonance in e + e − annihilations at the DORIS storage ring. The mass is determined to be 9.46±0.01 GeV which is consistent with that of the Upsilon. The gaussian width σ is observed as 8±1 MeV and is equal to the DORIS energy resolution. This suggests that the resonance is a bound state of a new heavy quark-antiquark pair. An electronic width Γ ee =1.3±0.4 keV was obtained. In standard theoretical models, this favors a quark charge assignment of 1 3 .
No description provided.
We perform an amplitude analysis of 10 GeV/ c π − p → K − K S 0 p data as a function of K − K 0 mass from threshold up to 2 GeV. We find that the A 2 and g resonances are produced dominantly by natural and unnatural parity exchange, respectively, and we determine their resonance parameters. We present further evidence for the I = 1, 4 + state A 2 ∗ (1900), in particular by isolating interference effects. The structure of S-wave K − K 0 production suggests an I = 1, 0 + state just below 1300 MeV of width about 250 MeV.
CROSS SECTIONS FROM FITTING MASS SPECTRUM. THE RESONANT AMPLITUDE CONTRIBUTIONS ALSO GIVEN IN PAPER.
The reaction p p → π − π + has been studied at 10.1 GeV/ c in the − t interval from 0.15 to 1.5 (GeV/ c ) 2 . A line-reversal comparison with backward elastic scattering π + p → p π + shows good agreement for − t > 0.3 (GeV/ c ) 2 .
No description provided.
No description provided.
Muon-neutrino and -antineutrino scattering off electrons was detected in a 19-ton Al spark chamber, exposed to the wide-band ν (ν¯) beam from the CERN proton synchrotron. The background was determined experimentally. 11 (10) genuine νμ− (ν¯μ−) e scattering events were found. The respective cross sections are (1.1±0.6)×10−42(Eν/GeV) cm2 and (2.2±1.0)×10−42(Eν/GeV) cm2. The analysis excludes a pure V−A interaction, and makes a pure V or A theory improbable. The data agree well with the Salam-Weinberg model and sin2θW=0.35±0.08.
No description provided.
No description provided.
Annihilation of e + e − into final states with a single electron has been studied with the PLUTO detector at the DORIS storage ring at CMS energies from 3.6 to 5 GeV. In the sample of 4-prong events without any detected photon we observe 21 events which we assign to the reaction e + e − → τ + τ − → νν e + νϱ 0 π . We obtain a branching ratio for τ + → νϱ 0 π + of 0.050 ± 0.015 with an overall systematic uncertainty of 30%. The data are consistent with the ϱπ coming from an A 1 meson.
No description provided.
Measurements are presented of the cross sections for omega meson photoproduction at a mean energy of 3.9 GeV from nuclear targets of D, Be, C, Al, Cu, Ag, Au. An optical and Glauber model analysis of the coherent cross sections has been performed to obtain the ω-nucleon cross section, σ ωN , and the photon-omega coupling constant γ ω 2 /4 π . Our results are summarised in table 4. We find good agreement with the quark model prediction that σ ω N = σ ϱ N , and with the value of γ ω 2 /4 π determined from the storage ring experiments and from an earlier complex nuclei measurement. However, we disagree with more recent complex nuclei measurements which found a high value of γ ω 2 /4 π .
COHERENT OMEGA PHOTOPRODUCTION AFTER SUBTRACTING A FITTED INCOHERENT SIGNAL.
COHERENT OMEGA PHOTOPRODUCTION AFTER SUBTRACTING A FITTED INCOHERENT SIGNAL.
The reactions p¯p→V0+neutrals were studied in a multiparticle spectrometer at 3.0 GeV/c incident momentum, with a sensitivity of about 150 events/μb. Differential cross sections and polarization of the Λ¯ for the final states Λ¯(Λ) and Λ¯(Σ0) are reported and compared with theoretical models. Differential cross sections of the K0 in K0[K*(890)] and the Λ in Λ(Λ¯+Σ¯0) are also measured. Upper limits of a few μb MeV are obtained for the formation of narrow resonances decaying into V0+neutrals in the mass interval 2.74-2.80 GeV/c2.
FORWARD HEMISPHERE TOTAL CROSS SECTIONS NOT INCLUDING CHARGE CONJUGATE REACTIONS. CORRECTED FOR DECAY BRANCHING RATIOS AND FOR BACKGROUNDS.
No description provided.
No description provided.
High statistics data for the reactions K ± p → K S 0 π ± p at 10 GeV/ c are analysed. The K ∗ (1 − ), K ∗ (2 + ), and K ∗ (3 − ) resonance parameters and production cross sections are calculated. The Kπ production amplitudes are determined as a function of t and the produced Kπ mass. Isoscalar natural-parity-exchange (NPE) is dominant. The t dependence of the K ± NPE amplitudes have a cross-over at t = −0.3 (GeV/ c ) 2 for both K ∗ (890) and K ∗ (1420) production, being more pronounced for the K ∗ (1420). Natural-parity-exchange interference effects are isolated. The NPE amplitudes are decomposed into pomeron-, f-, and ω-exchange contributions. S-wave Kπ production is found to be consistent with the Kπ partial-wave analyses of charge-exchange reactions.
CORRECTED FOR BACKGROUND, BREIT-WIGNER TAILS AND T-ACCEPTANCE. SYSTEMATIC ERROR INCLUDED.
DATA FOR K PI PRODUCTION AND ANGULAR DISTRIBUTIONS ARE IN THE PRECEDING PAPER, R. BALDI ET AL., NP B134, 365 (1978).