The $\Sigma$ beam asymmetry in the photoproduction of negative pions from quasi-free neutrons in a deuterium target was measured at Graal in the energy interval 700 - 1500 MeV and a wide angular range, using polarized and tagged photons. The results are compared with recent partial wave analyses.
The measured beam polarization asymmetry for photon energy 753 MeV.
The measured beam polarization asymmetry for photon energy 820 MeV.
The measured beam polarization asymmetry for photon energy 884 MeV.
High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.
The Collins and Sivers asymmetries for charged hadrons produced in deeply inelastic scattering on transversely polarised protons have been extracted from the data collected in 2007 with the CERN SPS muon beam tuned at 160 GeV/c. At large values of the Bjorken x variable non-zero Collins asymmetries are observed both for positive and negative hadrons while the Sivers asymmetry for positive hadrons is slightly positive over almost all the measured x range. These results nicely support the present theoretical interpretation of these asymmetries, in terms of leading-twist quark distribution and fragmentation functions.
The COLLINS asymmetry for positively charged hadrons as a function of X.
The COLLINS asymmetry for positively charged hadrons as a function of Z.
The COLLINS asymmetry for positively charged hadrons as a function of PT.
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector for photon energies between 0.92 and 1.68~GeV at the electron accelerator ELSA. The beam asymmetry~$\Sigma$ has been extracted for $115^\circ < \theta_{\rm c.m.} < 155^\circ$ of the $\pi^0$~meson and for $\theta_{\rm c.m.} < 60^\circ$. The new beam asymmetry data improve the world database for photon energies above 1.5~GeV and, by covering the very forward region, extend previously published data for the same reaction by our collaboration. The angular dependence of $\Sigma$ shows overall good agreement with the SAID parameterization.
Photon beam asymmetry at incident photon energy 0.932 GeV.
Photon beam asymmetry at incident photon energy 0.965 GeV.
Photon beam asymmetry at incident photon energy 0.998 GeV.
A measurement is presented of inelastic photo- and electroproduction of J/psi mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/psi mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k_T factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data.
Measured differential photoproduction cross section as a function of the squared transverse momentum of the J/PSI.
Measured differential photoproduction cross section as a function of the elasticity of the J/PSI.
Measured photoproduction cross section as a function of the photon-proton centre of mass energy W.
The polarization observable I^s, a feature exclusive to the acoplanar kinematics of multi-meson final states produced via linearly polarized photons, has been measured for the first time. Results for the reaction g p -> p pi0 eta are presented for incoming photon energies between 970 MeV and 1650 MeV along with the beam asymmetry I^c. The comparably large asymmetries demonstrate a high sensitivity of I^s to the dynamics of the reaction. Fits using Bonn-Gatchina partial wave analysis demonstrate that the new polarization observables carry significant information on the contributing partial waves.
Measured beam asymmetry I_S as a function of the angle between the reaction plane and the plane of the two final state particles with the the proton as the recoiling particle for the cm energy range 1642 to 1770 MeV.
Measured beam asymmetry I_S as a function of the angle between the reaction plane and the plane of the two final state particles with the the proton as the recoiling particle for the cm energy range 1770 to 1898 MeV.
Measured beam asymmetry I_S as a function of the angle between the reaction plane and the plane of the two final state particles with the the proton as the recoiling particle for the cm energy range 1898 to 1994 MeV.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
A study of the angular distributions of leptons from decays of J/psi's produced in p-C and p-W collisions at sqrt{s}=41.6 GeV has been performed in the Feynman-x region -0.34 < x_F < 0.14 and for transverse momentum up to 5.4 GeV/c. The data were collected by the HERA-B experiment at the HERA proton ring of the DESY laboratory. The results, based on a clean selection of 2.3 x 10^5 J/psi's reconstructed in both the e^+ e^- and mu^+ mu^- decay channels, indicate that J/psi's are produced with longitudinal polarization. The magnitude of the effect is maximal at low p_T. For p_T >1 GeV/c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises.
Output parameters obtained by fitting the distributions.
Values of the parameters Lambda_theta, Lambda_phi et Lambda_theta_phi measured in the Collins-Soper frame as functions of the average reconstructed p_T for combined carbon and tungsten data.
Values of the parameters Lambda_theta, Lambda_phi et Lambda_theta_phi measured in the Collins-Soper frame as functions of the average reconstructed x_F for combined carbon and tungsten data.
The angular distributions of the unpolarised differential cross section and tensor analysing power $A_{xx}$ of the $\vec{d}d\to\alpha \eta$ reaction have been measured at an excess energy of 16.6 MeV. The ambiguities in the partial-wave description of these data are made explicit by using the invariant amplitude decomposition. This allows the magnitude of the s-wave amplitude to be extracted and compared with results published at lower energies. In this way, firmer bounds could be obtained on the scattering length of the $\eta \alpha$ system. The results do not, however, unambiguously prove the existence of a quasi-bound $\eta \alpha$ state.
Total cross section from fit to the differential angular distribution.
Differential angular distribution.
Analysing power measurements.
At the electron accelerator ELSA a linearly polarised tagged photon beam is produced by coherent bremsstrahlung off a diamond crystal. Orientation and energy range of the linear polarisation can be deliberately chosen by accurate positioning of the crystal with a goniometer. The degree of polarisation is determined by the form of the scattered electron spectrum. Good agreement between experiment and expectations on basis of the experimental conditions is obtained. Polarisation degrees of P = 40% are typically achieved at half of the primary electron energy. The determination of P is confirmed by measuring the beam asymmetry, \Sigma, in pi^0 photoproduction and a comparison of the results to independent measurements using laser backscattering.
Beam asymmetry as a function of the PI0 centre of mass scattering angle.
Beam asymmetry as a function of the PI0 centre of mass scattering angle.
Beam asymmetry as a function of the PI0 centre of mass scattering angle.