Precise Measurement of the $e^+ e^- \to \pi^+\pi^- (\gamma)$ Cross Section with the Initial-State Radiation Method at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 86 (2012) 032013, 2012.
Inspire Record 1114155 DOI 10.17182/hepdata.115140

A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.

3 data tables

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING***

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.


Measurement of polarization observables $\textbf{T}$, ${\textbf{P}}$, and ${\textbf{H}}$ in $\mathbf {\pi ^0}$ and $\mathbf {\eta }$ photoproduction off quasi-free nucleons

The CBELSA/TAPS collaboration Jermann, N. ; Krusche, B. ; Metag, V. ; et al.
Eur.Phys.J.A 59 (2023) 232, 2023.
Inspire Record 2712592 DOI 10.17182/hepdata.145075

The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.

4 data tables

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

More…

Observation of a structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ in the $\mathbf{\gamma p \rightarrow p \pi^0 \eta} $ reaction

The CBELSA/TAPS collaboration Metag, V. ; Nanova, M. ; Hartmann, J. ; et al.
Eur.Phys.J.A 57 (2021) 325, 2021.
Inspire Record 1987678 DOI 10.17182/hepdata.115572

The reaction $\gamma p \rightarrow p \pi^0 \eta$ has been studied with the CBELSA/TAPS detector at the electron stretcher accelerator ELSA in Bonn for incident photon energies from threshold up to 3.1 GeV. This paper has been motivated by the recently claimed observation of a narrow structure in the M$_{N\eta}$ invariant mass distribution at a mass of 1678 MeV/$c^2$. The existence of this structure cannot be confirmed in the present work. Instead, for E$_{\gamma}$ = 1400 - 1500 MeV and the cut M$_{p\pi^0} \le 1190 $ MeV/$c^2$ a statistically significant structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ is observed with a width of $\Gamma\approx 35$ MeV/$c^2$ while the mass resolution is $\sigma_{res}$ = 5 MeV/$c^2$. Increasing the incident photon energy from 1420 to 1540 MeV this structure shifts in mass from $\approx$ 1700MeV/c$^2$ to $\approx$ 1725 MeV/$c^2$; the width increases to about 50 MeV/$c^2$ and decreases thereafter. The cross section associated with this structure reaches a maximum of $\approx$ 100 nb around E$_{\gamma} \approx$ 1490 MeV (W $\approx $ 1920 MeV), which coincides with the $p a_0$ threshold. Three scenarios are discussed which might be the origin of this structure in the M$_{p\eta}$ invariant mass distribution. The most likely interpretation is that it is due to a triangular singularity in the $\gamma p \rightarrow p a_0 \rightarrow p \pi^0 \eta$ reaction

32 data tables

Differential cross section for $\pi^0$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.

Differential cross section for $\eta$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.

Differential cross section for $p$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.

More…

The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

The COMPASS collaboration Alexeev, M.G. ; Alexeev, G.D. ; Amoroso, A. ; et al.
Phys.Rev.D 105 (2022) 012005, 2022.
Inspire Record 1898933 DOI 10.17182/hepdata.114098

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

4 data tables

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

More…

Measurement of the Helicity Asymmetry $E$ for the reaction $ \gamma p\to \pi^0 p$

The CBELSA/TAPS collaboration Gottschall, M. ; Afzal, F. ; Anisovich, A.V. ; et al.
Eur.Phys.J.A 57 (2021) 40, 2021.
Inspire Record 1731795 DOI 10.17182/hepdata.100433

A measurement of the double-polarization observable $E$ for the reaction $\gamma p\to \pi^0 p$ is reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility in Bonn using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided longitudinally-polarized protons. Circularly-polarized photons were produced via bremsstrahlung of longitudinally-polarized electrons. The data cover the photon energy range from $E_\gamma =600$~MeV to $E_\gamma =2310$~MeV and nearly the complete angular range. The results are compared to and have been included in recent partial wave analyses.

1 data table

Double-polarization observable E for different beam energies from 600 to 2310 MeV


Version 4
Measurement of the $\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

10 data tables

Results of the BESIII measurement of the cross section $\sigma^{\rm bare}_{\pi^+\pi^-(\gamma_{\rm FSR})} \equiv \sigma^{\rm bare}(e^+e^-\rightarrow\pi^+\pi^-(\gamma_{\rm FSR}))$ and the squared pion form factor $|F_\pi|^2$. The errors are statistical only. The value of $\sqrt{s'}$ represents the bin center. The 0.9$\%$ systematic uncertainty is fully correlated between any two bins.

Results for the bare cross section $\sigma^\text{bare}_{\pi^+\pi^-}$ and the pion form factor together with their statistical uncertainties. The systematical uncertainties are given by 0.9% (see <a href="https://inspirehep.net/literature/1385603">arXiv:1507.08188</a>).

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

More…

Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 &lt; m_{3\pi} &lt; 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 &lt; t' &lt; 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


Energy scan of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections and evidence for the $\Upsilon(11020)$ decays into charged bottomonium-like states

The Belle collaboration Abdesselam, A. ; Adachi, I. ; Adamczyk, K. ; et al.
Phys.Rev.Lett. 117 (2016) 142001, 2016.
Inspire Record 1389855 DOI 10.17182/hepdata.74710

Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.

1 data table

Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.


Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Rev.D 84 (2011) 112004, 2011.
Inspire Record 884741 DOI 10.17182/hepdata.74220

We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.

14 data tables

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

More…

Exclusive $\rho^0$ Meson Photoproduction with a Leading Neutron at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 76 (2016) 41, 2016.
Inspire Record 1387751 DOI 10.17182/hepdata.74219

A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.

11 data tables

The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.

Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

More…

Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Observation of $Z_c(3900)^{0}$ in $e^+e^-\to\pi^0\pi^0 J/\psi$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 115 (2015) 112003, 2015.
Inspire Record 1377204 DOI 10.17182/hepdata.73771

Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.

1 data table

Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.


Measurement of $e^+e^- \to \gamma\chi_{cJ}$ via initial state radiation at Belle

The Belle collaboration Han, Y.L. ; Wang, X.L. ; Yuan, C.Z. ; et al.
Phys.Rev.D 92 (2015) 012011, 2015.
Inspire Record 1376480 DOI 10.17182/hepdata.73745

The process $e^+e^- \to \gamma\chi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $\Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. No significant signal is observed except from $\psi(2S)$ decays. Upper limits on the cross sections between $\sqrt{s}=3.80$ and $5.56~{\rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$\psi(4040$), $\psi(4160)$, and $\psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $\gamma\chi_{cJ}$.

3 data tables

Upper limits on the $e^+e^-\to \gamma\chi_{cJ}$ cross sections.

Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90$\%$ C.L.

Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90$\%$ C.L.


Production of exclusive dijets in diffractive deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 76 (2016) 16, 2016.
Inspire Record 1372086 DOI 10.17182/hepdata.73738

Production of exclusive dijets in diffractive deep inelastic $e^\pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $\gamma^*-p$ centre-of-mass energies in the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $\beta$ and $\phi$, where $\beta=x/x_{\rm I\!P}$, $x$ is the Bjorken variable and $x_{\rm I\!P}$ is the proton fractional longitudinal momentum loss. The angle $\phi$ is defined by the $\gamma^*-$dijet plane and the $\gamma^*-e^\pm$ plane in the rest frame of the diffractive final state. The $\phi$ cross section is measured in bins of $\beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

3 data tables

Differential cross-section $d\sigma/d\beta$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV^2$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation also given in the table.

Differential cross-section $d\sigma/d\phi$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation given in the table.

Results of the fit to the cross-section $d\sigma/d\phi$ in bins of $\beta$. The fitted function is proportional to $(1+A \rm{cos}2\phi)$. The uncertainty includes both statistical and systematical contributions (see text of paper).


Search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 012008, 2015.
Inspire Record 1366025 DOI 10.17182/hepdata.73692

Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.

1 data table

Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.


Measurement of the proton form factor by studying $e^{+} e^{-}\rightarrow p\bar{p}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112004, 2015.
Inspire Record 1358937 DOI 10.17182/hepdata.73442

Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\rightarrow p\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|G_{M}|$ within uncertainties.

1 data table

Summary of the Born cross section $\sigma_\text{Born}$, the effective FF $|G|$, and the related variables used to calculate the Born cross sections at the different c.m.energies $\sqrt{s}$, where $N_\text{obs}$ is the number of candidate events, $N_\text{bkg}$ is the estimated background yield, $\varepsilon^\prime=\varepsilon\times(1+\delta)$ is the product of detection efficiency $\varepsilon$ and the radiative correction factor $(1+\delta)$, and $L$ is the integrated luminosity. The first errors are statistical, and the second systematic.


Measurement of the $e^{+}e^{-} \to \eta J/\psi$ cross section and search for $e^{+}e^{-} \to \pi^{0} J/\psi$ at center-of-mass energies between 3.810 and 4.600~GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112005, 2015.
Inspire Record 1355215 DOI 10.17182/hepdata.73336

Using data samples collected with the BESIII detector operating at the BEPCII collider at center-of-mass energies from 3.810 to 4.600 GeV, we perform a study of $e^{+}e^{-} \to \eta J/\psi$ and $\pi^0 J/\psi$. Statistically significant signals of $e^{+}e^{-} \to \eta J/\psi$ are observed at $\sqrt{s}$ = 4.190, 4.210, 4.220, 4.230, 4.245, 4.260, 4.360 and 4.420 GeV, while no signals of $e^{+}e^{-} \to \pi^{0} J/\psi$ are observed. The measured energy-dependent Born cross section for $e^{+}e^{-} \to \eta J/\psi$ shows an enhancement around 4.2~GeV. The measurement is compatible with an earlier measurement by Belle, but with a significantly improved precision.

3 data tables

Results on $e^{+}e^{-}\to\eta J/\psi$ in data samples in which a signal is observed with a statistical significance larger than $5\sigma$. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{obs}_{\eta}(\mu^{+}\mu^{-})$/$N^\mathrm{obs}_{\eta}(e^{+}e^{-})$ from the fit, efficiency $\epsilon_{\mu}/\epsilon_{e}$, radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}(\mu^{+}\mu^{-})$/$\sigma^{B}(e^{+}e^{-})$ and combined Born cross section $\sigma^{B}_\mathrm{Com}$. The first uncertainties are statistical and the second systematic.

Upper limits of $e^{+}e^{-} \to \eta J/\psi$ using the $\mu^{+}\mu^{-}$ mode. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{sg}_{\eta}$, number of background from $\eta$ sideband $N^\mathrm{sb}_{\eta}$, and from $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, upper limit of signal number with the consideration of selection efficiency $N^\mathrm{up}_{\eta}/\epsilon$ (at the $90\%$ C.L.), radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}$ and upper limit on the Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.). The first uncertainties are statistical and the second systematic.

Upper limits of $e^{+}e^{-} \to \pi^{0} J/\psi$. The table shows the number of observed events in the $\pi^{0}$ signal region $N^\mathrm{sg}$, number of events in $\pi^{0}$ sideband $N^\mathrm{sb}_{\pi^{0}}$, and in $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, the upper limit of signal events with the consideration of the selection efficiency $N^\mathrm{up}(\mu^{+}\mu^{-})/\epsilon$ (at the $90\%$ C.L.) and the upper limit of Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.).


Hyperon Production in $e^+ e^-$ Annihilation at 10-{GeV} Center-of-mass Energy

The ARGUS collaboration Albrecht, H. ; Binder, U. ; Bockmann, P. ; et al.
Z.Phys.C 39 (1988) 177, 1988.
Inspire Record 251097 DOI 10.17182/hepdata.1697

The production cross sections for the Λ, Σ0, Ξ−, Σ0 (1385), Ξ0 (1530) and Ω− hyperons have been measured, both in the continuum and in direct ϒ decays. Baryon rates in direct ϒ decays are enhanced by a factor of 2.5 or more compared to the continuum. Such a large baryon enhancement cannot be explained by standard fragmentation models. The strangeness suppression for baryons and mesons turns out to be the same. A strong suppression of spin 3/2 states is observed.

23 data tables

Hyperon rates per multihadronic event in direct UPSILON decays.

Hyperon rates per multihadronic event in the continuum.

LAMBDA spectrum (1/SIG(had))*D(SIG)/D(X) for UPSILON (1S) direct decays, with X = P/Pmax.

More…

Diffractive Dijet Production with a Leading Proton in $ep$ Collisions at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 05 (2015) 056, 2015.
Inspire Record 1343110 DOI 10.17182/hepdata.73234

The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.

23 data tables

Integrated $e^{+}p$ diffractive dijet cross sections in $\gamma p$. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation is also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.

Integrated $e^{+}p$ diffractive dijet cross sections in DIS. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation and the radiative correction ($1+\delta_{\text{rad}}$) are also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.

Ratio of integrated $e^{+}p$ diffractive dijet cross sections for $Q^2<2\,\text{GeV}^2$ (photoproduction) to $Q^2>4\,\text{GeV}^2$ (DIS).

More…

Measurement of $e^+e^- \to \pi^+\pi^-\psi(2S)$ via Initial State Radiation at Belle

The Belle collaboration Wang, X.L. ; Yuan, C.Z. ; Shen, C.P. ; et al.
Phys.Rev.D 91 (2015) 112007, 2015.
Inspire Record 1324785 DOI 10.17182/hepdata.71501

We report measurement of the cross section of $e^+e^-\to \pi^+\pi^-\psi(2S)$ between 4.0 and $5.5 {\rm GeV}$, based on an analysis of initial state radiation events in a $980 \rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $\pi^+\pi^-\psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347\pm 6\pm 3) {\rm MeV}/c^2$, $\Gamma_{Y(4360)} = (103\pm 9\pm 5) {\rm MeV}$, $M_{Y(4660)} = (4652\pm10\pm 8) {\rm MeV}/c^2$, $\Gamma_{Y(4660)} = (68\pm 11\pm 1) \rm MeV$; and ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (10.9\pm 0.6\pm 0.7) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (8.1\pm 1.1\pm 0.5) \rm eV$ for one solution; or ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (9.2\pm 0.6\pm 0.6) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (2.0\pm 0.3\pm 0.2) \rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {\rm GeV}/c^2$ is observed in the $\pi^{\pm}\psi(2S)$ intermediate state in the $Y(4360)$ decays.

1 data table

Measured $e^+e^- \to \pi^+\pi^-\psi(2S)$ cross section for center of mass energy ($E_{\rm cm}$) from 4.0 GeV/$c^2$ to 5.5 GeV/$c^2$. The errors are the sums of statistical errors of signal and background events and the systematic errors.


Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 03 (2015) 092, 2015.
Inspire Record 1332186 DOI 10.17182/hepdata.73124

A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4<Q^{2}<100 GeV^{2} and by the fractional proton longitudinal momentum loss x_pom<0.03. The resulting cross sections are compared with next-to-leading order QCD predictions based on diffractive parton distribution functions and the value of the strong coupling constant is extracted.

11 data tables

Integrated cross section in the measurement phase space.

Diffractive DIS dijet cross section measured differentially as a function of $Q^2$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two columns show the correction factors for hadronisation and QED radiation, respectively.

Diffractive DIS dijet cross section measured differentially as a function of $y$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two column show the correction factors for hadronisation and QED radiation, respectively.

More…

Measurement of the $\bar{B} \rightarrow X_s \gamma$ Branching Fraction with a Sum of Exclusive Decays

The Belle collaboration Saito, T. ; Ishikawa, A. ; Yamamoto, H. ; et al.
Phys.Rev.D 91 (2015) 052004, 2015.
Inspire Record 1330289 DOI 10.17182/hepdata.72902

We use 772$\times 10^6$ $B \bar{B}$ meson pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector to measure the branching fraction for $\bar{B} \rightarrow X_s \gamma$. Our measurement uses a sum-of-exclusives approach in which 38 of the hadronic final states with strangeness equal to $+1$, denoted by $X_s$, are reconstructed. The inclusive branching fraction for $M_{X_s}<$ 2.8 GeV/$c^2$, which corresponds to a minimum photon energy of 1.9 GeV, is measured to be ${\cal B}(\bar{B} \rightarrow X_s \gamma)=(3.51\pm0.17\pm0.33)\times10^{-4}$, where the first uncertainty is statistical and the second is systematic.

1 data table

The yields and partial branching fraction in each $M_{X_s}$ mass bin for the decay $\bar{B} \rightarrow X_s \gamma$, where $\bar{B}$ is either $\bar{B}^0$ or $B^-$, $X_s$ denotes all the hadron combinations that carry strangeness of +1, and charge conjugation is implied.


Evidence for $e^+e^-\to\gamma\chi_{c1, 2}$ at center-of-mass energies from 4.009 to 4.360 GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Chin.Phys.C 39 (2015) 041001, 2015.
Inspire Record 1329785 DOI 10.17182/hepdata.72880

Using data samples collected at center-of-mass energies of $\sqrt{s}$ = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process $e^+e^-\to\gamma\chi_{cJ}$ $(J = 0, 1, 2)$ and find evidence for $e^+e^-\to\gamma\chi_{c1}$ and $e^+e^-\to\gamma\chi_{c2}$ with statistical significances of 3.0$\sigma$ and 3.4$\sigma$, respectively. The Born cross sections $\sigma^{B}(e^+e^-\to\gamma\chi_{cJ})$, as well as their upper limits at the 90% confidence level are determined at each center-of-mass energy.

3 data tables

The results on $e^+e^-\to\gamma\chi_{c0}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points. Numbers taken from journal version: some slight differences with respect to arXiv:1411.6336v1 in last two columns.

The results on $e^+e^-\to\gamma\chi_{c1}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.

The results on $e^+e^-\to\gamma\chi_{c2}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.


Measurement of the b-quark fragmentation function in Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.D 65 (2002) 092006, 2002.
Inspire Record 582951 DOI 10.17182/hepdata.72835

We present a measurement of the b-quark inclusive fragmentation function in Z0 decays using a novel kinematic B-hadron energy reconstruction technique. The measurement was performed using 350,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1997 and 1998. We compared the sacled B-hadron energy distribution with models of b-quark fragmentation and with several ad hoc functional forms. A number of models and functions are excluded by the data. The average scaled energy of weakly-decaying B hadrons was measured to be <x_B>= 0.709 +-0.003 (stat) +-0.003 (syst) +-0.002 (model).

2 data tables

DATA FROM THE ERRATUM (PR D66,079905,2002). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.

DATA FROM ORIGINAL PAPER, SUPERSEDED BY ERRATUM (SEE ABOVE TABLE). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.


Exclusive electroproduction of J/psi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 695 (2004) 3-37, 2004.
Inspire Record 647777 DOI 10.17182/hepdata.46277

The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.

20 data tables

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 0.15 to 0.18 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 2 to 5 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 5 to 10 GeV**2.

More…