Date

Inclusive rho0 Production in pi- p Interactions at 205-GeV/c

Winkelmann, F.C. ; Bingham, H.H. ; Chew, D.M. ; et al.
Phys.Lett.B 56 (1975) 101-104, 1975.
Inspire Record 91206 DOI 10.17182/hepdata.27880

The inclusive ϱ ° production cross section has been measured in the reaction π − p → π + π − X at 205 GeV/ c . We find σ ( ϱ ° ) = 13.5 ± 3.4 mb, with most of the production occuring in the central region. Assuming σ ( ϱ + ) ≈ σ ( ϱ − ) ≈ σ ( ϱ ° ), it is concluded that approximately one-third of the pions at this energy come from ϱ -decay.

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of the Elastic Scattering of Neutrinos and Anti-neutrinos by Protons

Entenberg, A. ; Horstkotte, J. ; Kozanecki, W. ; et al.
Phys.Rev.Lett. 42 (1979) 1198, 1979.
Inspire Record 140053 DOI 10.17182/hepdata.20799

We have observed 217 (66) events of the process νp→νp (ν¯p→ν¯p) with an estimated background of 82 (28). The neutral-to-charged-current ratios are σ(νp→νp)σ(νn→μ−p)=0.11±0.02 and σ(ν¯p→ν¯p)σ(ν¯p→μ+n)=0.19±0.05 for 0.40<Q2<0.90 (GeV/c)2, where -Q2 is the square of the momentum transfer to the nucleon. These yield σ(ν¯p→ν¯p)σ(νp→νp)=0.53±0.17. The neutral-current form factors at Q2=0 are GE=0.5−0.5+0.25, GM=1.0−0.04+0.35, and gA=0.5−0.15+0.2.

1 data table

No description provided.


Elastic Electroproduction of $\rh0$ and $J/\Psi$ Mesons at large $Q~2$ at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 468 (1996) 3-36, 1996.
Inspire Record 416228 DOI 10.17182/hepdata.51967

The total cross sections for the elastic electroproduction of $\rh0$ and $J/\Psi$ mesons for $Q~2$ $>$ 8 GeV$~2$ and $\langle W \rangle \simeq 90$ GeV/c$~2$ are measured at HERA with the H1 detector. The measurements are for an integrated electron$-$proton luminosity of $\simeq$3pb$~{-1}$. The dependences of the total virtual photon$-$proton ($\gamma~* p$) cross sections on $Q~2$, $W$ and the momentum transfer squared to the proton ($t$), and, for the $\rho$, the dependence on the polar decay angle ($\cos \theta~*$), are presented. The $J/\Psi$ : $\rh0$ cross section ratio is determined. The results are discussed in the light of theoretical models and of the interplay of hard and soft physics processes.

20 data tables

Overall EP cross section for M(PI+PI-) < 1.5 GEV.

Overall EP cross section, taking into account the J/PSI --> LEPTON+ LEPTON - branching fraction 0.12.

Integrated EP cross section.

More…

Measurement of the cross section asymmetry of the reaction gamma p --> pi0 p in the resonance energy region E(gamma) = 0.5-GeV - 1.1-GeV.

Adamian, F.V. ; Bunyatyan, A.Yu. ; Frangulian, G.S. ; et al.
Phys.Rev.C 63 (2001) 054606, 2001.
Inspire Record 536542 DOI 10.17182/hepdata.31424

The cross section asymmetry Sigma has been measured for the photoproduction of pi0-mesons off protons, using polarized photons in the energy range Eg = 0.5 - 1.1 GeV. The CM angular coverage is Theta = 85 - 125 deg with energy and angle steps of 25 MeV and 5 deg, respectively. The obtained Sigma data, which cover the second and third resonance regions, are compared with existing experimental data and recent phenomenological analyses. The influence of these measurements on such analyses is also considered.

9 data tables

Axis error includes +- 3/3 contribution (Due to accuracy of the linear polarization calculations).

Axis error includes +- 3/3 contribution (Due to accuracy of the linear polarization calculations).

Axis error includes +- 3/3 contribution (Due to accuracy of the linear polarization calculations).

More…

Observation of exclusive charmonium production and $\gamma+\gamma$ to $\mu^+\mu^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 102 (2009) 242001, 2009.
Inspire Record 812821 DOI 10.17182/hepdata.55758

We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| < 0.6, with M(mumu) in [3.0,4.0] GeV/c2, and either no other particles, or one additional photon, detected. The J/psi and the psi(2S) are prominent, on a continuum consistent with the QED process gamma+gamma --> mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)| < 0.6, M(mumu) in [3.0,4.0] GeV/c2, is [Integral ds/(dM.deta1.deta2)] = 2.7+/-0.5 pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in J/psi production: ds/dy(y=0) (J/psi_O/IP) < 2.3 nb at 95% C.L.

5 data tables

Prompt J/psi cross section from exclusive photoproduction at mid rapidity.

Prompt Psi(2S) cross section from exclusive photoproduction at mid rapidity.

Prompt photoproduction cross-section ratio Psi(2S)/(J/psi) at mid rapidity.

More…

Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

2 data tables

The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.

The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).


Observation of $Z_c(3900)^{0}$ in $e^+e^-\to\pi^0\pi^0 J/\psi$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 115 (2015) 112003, 2015.
Inspire Record 1377204 DOI 10.17182/hepdata.73771

Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.

1 data table

Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.