Date

A secondary peak at t = −1 (GeV/c)2 in high energy π-p charge exchange scattering

Sonderegger, P. ; Kirz, J. ; Guisan, O. ; et al.
Phys.Lett. 20 (1966) 75-78, 1966.
Inspire Record 1498686 DOI 10.17182/hepdata.75504

None

23 data tables

No description provided.

No description provided.

No description provided.

More…

Forward $\pi^-p$ charge exchange scattering between 0.8 and 1.9 GeV

Borgeaud, P. ; Bruneton, C. ; Ducros, Y. ; et al.
Phys.Lett. 10 (1964) 134-137, 1964.
Inspire Record 1400914 DOI 10.17182/hepdata.31224

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic $\pi^{+}p$ scattering at 1.6 GeV/c

Daudin, A. ; Jabiol, M.A. ; Kochowski, C. ; et al.
Nuovo Cim. 33 (1964) 1300-1308, 1964.
Inspire Record 1187695 DOI 10.17182/hepdata.1107

The c.m. angular distribution of π+p elastic scattering at 1.6 GeV/c shows a strong forward diffraction peak decreasing exponentially with a slopeA + = (6.9±0.5) GeV−2 comparable to thatA − = (7.2±0.5) GeV−2 observed in a previous experiment for π-p elastic scattering at the same incident momentum. The behaviour of the π+ and the π− angular distributions is quite different beyond the diffraction peak. The π+p total elastic cross-section is found to be Σ01 = (16.70±0.45) mb.

3 data tables

No description provided.

No description provided.

No description provided.


$\pi$-proton scattering at 516, 616, 710, 887, and 1085 MeV

Gbaed, F. ; Montanet, L. ; Lehmann, P. ; et al.
Nuovo Cim. 22 (1961) 193-198, 1961.
Inspire Record 1187691 DOI 10.17182/hepdata.37734

We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.

5 data tables

No description provided.

No description provided.

No description provided.

More…

$\pi^{-}+ p$ elastic scattering at 1 200 MeV

Bertanza, L. ; Carrara, R. ; Drago, A. ; et al.
Nuovo Cim. 19 (1961) 467-481, 1961.
Inspire Record 1184999 DOI 10.17182/hepdata.1109

A bubble chamber investigation of π−+p elastic scattering at 1 200 MeV (K.E.) is reported. The total and differential cross-sections are determined. By extrapolation of the angular distribution, the 0° cross-section is derived and compared with the results obtained with the help of the dispersion relations and the optical theorem. The forward peak is investigated in terms of diffraction scattering and a value for the optical radius is derived.

3 data tables

No description provided.

No description provided.

No description provided.


Elastic scattering $\pi^{-} + p$ at 915 MeV

Bergia, S. ; Bertocchi, L. ; Borelli, V. ; et al.
Nuovo Cim. 15 (1960) 551-564, 1960.
Inspire Record 1184997 DOI 10.17182/hepdata.37779

The differential cross-section for elastic scattering π−+p has been determined on the basis of 1 421 events observed in a propane bubble chamber. The angular distribution presents a backward bump (θ>90°) of (31.5±1.3)%. The amplitude at 0° obtained extrapolating the angular distribution by means of a least squares fit is compared with the value obtained from the dispersion relations and the optical theorem. New values of the pion proton cross-sections were taken into account for the dispersion relation integrals. Using the same best fit of the angular distribution a value for the interaction radius is obtained from considerations based on the diffraction scattering part.

1 data table

No description provided.


Elastic scattering $\pi^{+} + p$ at 1.0 GeV

Bidan, U. ; Waloschek, P. ; Lévy, F. ; et al.
Nuovo Cim. 24 (1962) 334-342, 1962.
Inspire Record 1185006 DOI 10.17182/hepdata.37718

The angular distribution π+-p at 1.0 GeV was determined on the basis of l032 events measured in a propane bubble chamber. Comparison is made with data of 820 and 900 MeV and with angular distributions π−+p at similar energies.

1 data table

No description provided.


Search for Narrow Baryons in $\pi^- p$ Elastic Scattering at Large Angles

The CERN-College de France-Ecole Poly collaboration Baillon, P. ; Barrelet, E. ; Benayoun, Maurice ; et al.
Phys.Lett.B 94 (1980) 533-540, 1980.
Inspire Record 153784 DOI 10.17182/hepdata.27177

Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.

1 data table

ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).


CROSS-SECTIONS FOR PI- + P ---> N + (K) PI0 (K = 1 TO 5) AND PI- + P ---> N + ETA0 (ETA0 ---> 2 GAMMA) FOR INCIDENT PION MOMENTA BETWEEN 1.3-GEV/C AND 3.8-GEV/C

Crouch, H.R. ; Hargraves, R. ; Lanou, R.E. ; et al.
Phys.Rev.D 21 (1980) 3023-3058, 1980.
Inspire Record 158169 DOI 10.17182/hepdata.4334

This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.

41 data tables

No description provided.

SIG = 4*PI*LEG(L=0).

FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.

More…

The momentum dependence of the differential pion charge exchange cross section from 1.3 to 3.8 GeV/c

Kistiakowsky, V. ; Bastian, P. ; Brabson, B. ; et al.
Conference Paper, 1976.
Inspire Record 1408079 DOI 10.17182/hepdata.70407

None

18 data tables

No description provided.

No description provided.

No description provided.

More…