We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Photoproduction events which have two or more jets have been studied in the $W_{\gamma p}$ range 135GeV $< W_{\gamma p} <$ 280GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals ($\Delta\eta$) of up to four units and have transverse energies greater than 6GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300MeV. The fraction of events containing a gap is measured as a function of \deta. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of $\Delta\eta \sim 3$, then reaches a constant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.
No description provided.
No description provided.
An upper limit on the branching ratio for the decay $K^+ \! \rightarrow \! \pi^+ \nu \overline{\nu}$ is set at $2.4 \times 10^{-9}$ at the 90\% C.L. using pions in the kinematic region $214~{\rm MeV}/c < P_\pi < 231~{\rm MeV}/c$. An upper limit of $5.2 \times 10^{-10}$ is found on the branching ratio for decays $K^+ \! \rightarrow \! \pi^+ X^0$, where $X^0$ is any massless, weakly interacting neutral particle. Limits are also set for cases where $M_{X^0}>0$.
Here UNSPEC is any massless, weakly interacting neutral particle. The measured exposure for the data reported is 3.49E+11 kaons stopped in a target.
Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have made two measurements of the mixing parameter χ d using kaons as flavour tags. Using D ∗+ K ± correlations we found χ d = 0.20 ± 0.13 ± 0.12 and from the study of (D ∗+ ℓ − ) K ± correlations we obtained χ d = 0.19 ± 0.07 ± 0.09. The branching ratio for B → D ∗+ X has been updated: Br( B → D ∗+ X) = (19.6 ± 1.9) %. We have also determined the average multiplicity of charged kaons in B 0 decays to be 0.78 ± 0.08.
Mixing parameter from counting kaon events. First (...,C=D*+K+-) and second(...,C=(D*+LEPTON-)K+-) value are obtained from a study of D*+K+- and (D*+LEPTO N-)K+- correlations respectively. Second value and the value, reported in Phys.Lett. 324B (1994) 249, were averaged, result third value (...,C=COMBINED) of the mixing parameter in the table (see text for details). In the second value (...,C=(D*+LEPTON-)K+-) the first systematic error is due to the background estimation, the branching ratio for the process B --> K+(K-) X, experimental cuts, and the second one is due to to the uncertainty on the branching ratio for the processes D0 --> K+- X.
No description provided.
We present a direct measurement of Ac=2vcac(vc2+ac2) from the left-right forward-backward asymmetry of D*+ and D+ mesons in Z0 events produced with the longitudinally polarized SLAC Linear Collider beam. These Z0→cc¯ events are tagged on the basis of event kinematics and decay topology from a sample of hadronic Z0 decays recorded by the SLAC Large Detector. We measure Ac0=0.73±0.22(stat)±0.10(syst).
No description provided.
The Λ b polarization in hadronic Z decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic Z decays collected by the ALEPH detector at LEP between 1991 and 1994, 462 ± 31 Λ b candidates are selected using ( Λπ + )-lepton correlations. From this event sample, the Λ b polarization is measured to be P Λ b = −0.23 −0.20 +0.24 (stat.) −0.07 +0.08 (syst.).
No description provided.
We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN collider. We have studied the production of charged particles with transverse momenta ( p T ) up to 25 GeV/c. The results are in agreement with QCD predictions. The rise of 〈 p T 〉 with charged particle multiplicity may be related to changing production of low p T particles.
No description provided.
No description provided.
No description provided.
Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$
No description provided.
Durham and JADE algoritms were used.
We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN Sp p S collider. We have studied the production of K S 0 , Λ and Λ particles with transverse momenta ( p t ) up to 7 GeV/c and K ± up to 2 GeV/c. The kaon data are compared with a recent QCD prediction and are found to be in good agreement. The < p t > for K S 0 , Λ and Λ is seen to increase as a function of the charged particle multiplicity and is compared with charged particle production.
No description provided.
K0S Distribution parametrised in the form E*D3SIG/DP**3 = A / (1+ pT/pT0)**N. Best fit values for A, pT0 and N are given here.
No description provided.
A measurement of inclusive charged particle distributions in deep inelastic $ep$ scattering for $\gamma~* p$ centre-of-mass energies $75< W < 175$GeV and momentum transfer squared $10< Q~2 < 160$GeV$~2$ from the ZEUS detector at HERA is presented. The differential charged particle rates in the $\gamma~* p$ centre-of-mass system as a function of the scaled longitudinal momentum, $x_F$, and of the transverse momentum, $p_t~*$ and $<\!\!p_t~{*\,2}\!\!>\,\,$ , as a function of $x_F$, $W$ and $Q~2$ are given. Separate distributions are shown for events with (LRG) and without (NRG) a rapidity gap with respect to the proton direction. The data are compared with results from experiments at lower beam energies, with the naive quark parton model and with parton models including perturbative QCD corrections. The comparison shows the importance of the higher order QCD processes. Significant differences of the inclusive charged particle rates between NRG and LRG events at the same $W$ are observed. The value of $<\!\!p_t~{*\,2}\!\!>\,\,$ for LRG events with a hadronic mass $M_X$, which excludes the forward produced baryonic system, is similar to the $<\!\!p_t~{*\,2}\!\!>\,\,$ value observed in fixed target experiments at $W \approx M_X$.
Differential multiplicites for NRG events.. XL is parallel to the virtual photon axis.
Differential multiplicites for NRG events.. PT is relative to the virtual photon axis.
Mean PT**2 for NRG events.. PT is relative to the virtual photon axis.