We present first measurements of total cross section differences Δσ T and Δσ L for a polarized neutron beam transmitted through a polarized proton target. Measurements were carried out at SATURNE II, at 0.63, 0.88, 0.98 and 1.08 GeV. The results are compared with Δσ L data points deduced from p-d and p-p transmission experiments, and with phase shift analyses predictions. The present results together with the corresponding pp data yield two of the three spin dependent forward scattering amplitudes for isospin I =0.
Statistical errors are statistics and random fluctuations. Systematic error contains uncertainties in beam and target polarizations, hydrogen content of the target, and residual error due to misalignment.
New Results are presented on nuclear effects in deep inelastic muon scattering on deuterium and iron targets at large Q 2 . The ratio F Fe 2 (x) F D 2 2 (x) measured in the kinematic range 0.06⩽ x ⩽0.70, 14GeV 2 ⩽ Q 2 ⩽70 GeV 2 is in good agreement with earlier measurements in the region of x > 0.25. At lower x , the structure function ratio exhibits an enhancement of ≈5%.
Q**2 RANGE FOR EACH X BIN IS AS FOLLOWS: 14 TO 20, 16 TO 30, 18 TO 35, 18 TO 46, 20 TO 106, 23 TO 106, 23 TO 150, 26 TO 200, 26 TO 200, 26 TO 200 GEV**2.
Polarization parameters for the π − p → π 0 n charge exchange scattering have been measured at eight beam momenta between 1965 and 4220 MeV/ c using two different experimental set-ups. The angular range covered is −0.90 < cos θ π ∗ < 0.95 at the five momenta of 1965, 2168, 2360, 2566 and 2960 MeV/ c , where θ π ∗ is the emission angle of the π 0 meson in the c.m.s.. For three momenta of 2770, 3490 and 4220 MeV/ c , the measurements cover the forward angles of 0.1 < cos θ π ∗ < 1.0 . The results are compared with the predictions of π N partial wave analyses.
Polarisation measurements from SETUP1. Errors are statistical only.
Polarisation measurements from SETUP2. Errors are statistical only.
Legendre polynomial coefficients for fit to differential cross section data.
Precise measurements of the differential cross sections on the π − p→ π 0 n charge exchange scattering have been performed at six incident beam momenta of 1969, 2172, 2370, 2569, 2767 and 2965 MeV/ c covering a wide angular range of −0.95 < cos θ π ∗ < 0.95, where θ π ∗ is an emission angle of π 0 meson in the c.m.s. The results are compared with predictions of recent partial wave analyses.
Total cross sections obtained by fitting the Legendre polynomials to the DCS data.
Statistical errors only. Cos(theta) bin width is +- 0.025.
Total and annihilation n¯p cross sections from 100 to 500 MeV/c are reported, the first such measurements with good statistics in this momentum range. These cross sections are well represented by A+B/p, where p is the incident antineutron momentum, and are in agreement with previous n¯p and p¯n measurements. A comparison of these cross sections with phenomenological potential model calculations is good overall. However, the microscopic quark model gives unsatisfactory predictions. The agreement between previous p¯p annihilation cross sections and n¯p cross sections above 300 MeV/c is excellent. The total n¯p cross section is lower than the total p¯p cross section in this momentum range. Both of these types of behavior are predicted by potential models. The anticipated availability of future p¯p data below 300 MeV/c should indicate whether these trends continue at lower momenta.
No description provided.
Results are presented from reactions of 60 A GeV and 200 A GeV 16 O projectiles with C, Cu, Ag, and Au nuclei. Energy spectra measured at zero degrees and transverse energy distributions in the pseudorapidity range from 2.4 to 5.5 are shown. The average transverse energy per participant is found to be nearly independent of target mass. Estimates of nuclear stopping and of attained energy densities are made.
STOPPING POWER IS THE QUANTITY GIVEN IN THIS TABLE. IT IS DEFINED AS ( D(ET(EXP)/D(ETA) / D(ET(THEORY)/D(ETA) ) AND THE DENOMINATOR IS TAKEN TO BE 0.5*E(HADRON IN CM). ETA IS THE PSEUDO-RAPIDITY.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Neutrino and antineutrino total charged current cross sections on iron were measured in the 100, 160, and 200 GeV narrow band beams at the CERN SPS in the energy range 10 to 200 GeV. Assuming σ/E to be constant, the values corrected for non-isoscalarity are σv/E = (0.686 ± 0.019) * 10−38 cm2/ (GeV · nucleon) and σv/E = (0.339 ± 0.010) * 10−38 cm2/ (GeV·nucleon). Between 50 and 150 GeV no energy dependence of σ/E was observed within ±3% for neutrino and ±4% for antineutrino interactions.
Measured charged current total cross section.
Measured charged current total cross section.
No description provided.
The process γγ→π+π−π+π− has been investigated in reactions of the typee+e−→e+e−π+π−π+π− in the single tag mode. The range of the four momentum squared of one of the virtual photons was 0.28 GeV2/c2≦Q2≦3.6 GeV2/c2, the average being 〈Q2〉=0.92 GeV2/c2; the other photon was quasi real. The reaction is mainly described by the channels γγ→ρ0ρ0 and γγ→4π (phase space), occuring with about equal probability. TheQ2-dependence of the cross section is in agreement with the ρ form factor.
Data read from graph.. Additional overall systematic error 25%.
Data read from graph.. Additional overall systematic error 25%.. The Q**2 approx 0 datum is deduced from the earlier TASSO paper, Brandelik et al, Phys. Lett. 97B(1980)448, (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1151> RED = 1151 </a>) on rho0 rho0 production.