Differential cross-sections of p-d elastic scattering at large angles ( θ c.m. ⩾ 150°) have been measured in the energy interval 1−3.5 GeV. The results are compared with pole model predictions.
Only stattistical errors are presented.
Only stattistical errors are presented.
Only stattistical errors are presented.
In the experiments at the SPHINX facility in the 70 GeV proton beam of the IHEP accelerator the diffractive production reactionsp+N→[Σ(1385)0K+] +N andp+N→[Σ(1385)0K+]+N+ (neutral particles) were studied. In the effective mass spectra of the [Σ(1385)0K+] system in these processes there were no signals from the anomalously narrow baryon stateNϕ (1960) which had been observed earlier in the measurement at the BIS-2 setup.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The structure function ratiosF2C/F2Li,F2Ca/F2Li andF2Ca/F2C were measured in deep inelastic muonnucleus scattering at an incident muon energy of 90 GeV, covering the kinematic range 0.0085<x<0.6 and 0.8<Q2<17GeV2. The sensitivity of the nuclear structure functions to the size and mean density of the target nucleus is discussed.
Overall normalization error of 0.7%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.5%, due to uncertainties in target thickness, not included in the table.
We present the structure function ratiosF2He/F2D,F2C/F2D andF2Ca/F2D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. The kinematic range 0.0035<x<0.65 and 0.5<Q2<90 GeV2 is covered. At lowx the three ratios are significantly smaller than unity and the size of the depletion grows with decreasingx and increasing mass numberA. At intermediatex the ratios show an enhancement of about 2% above unity for C/D and Ca/D, possibly less for He/D. There are indications of someQ2 dependence in the Ca/D data. The integrals of the structure function differencesF2A−F2D are discussed.
No description provided.
No description provided.
No description provided.
The ratio of the structure function F 2 n / F 2 p ( x ) has been measured in deep inelastic scattering of 274 GeV muons on hydrogen and deuterium targets exposed simultaneously to the beam. The results were obtained from 0.3 (0.6) million events from hydrogen (deuterium) in the range 0.004 < x < 0.8 and 1 < Q 2 < 190 GeV 2 . At x < 0.25 both the statistical and the systematic error is below 2%. Implications for parton distributions and for the σ w / σ z production cross section ratio in p p collisions are discussed. When compared to other results obtained at lower energies, the data indicate a Q 2 dependence of the ratio.
No description provided.
The total v μ N charged current cross section in the energy interval 10–50 GeV is unfolded from 15' bubble chamber antineutrino data. The method is to isolate the quasielastic events and determine their relative contribution to the overall charged current sample. The scale parameter is found to be (0.29 ± 0.03) × 10 −38 cm 2 GeV −1 . Relevance of the method for neutrino oscillation studies is discussed.
Measured charged current total cross section.
Measured charged current total cross section.
Measured charged current total cross section.
The structure functions F p 2 and F d 2 measured by deep inelastic muon scattering at incident energies of 90 and 280 GeV are presented. These measurements cover a large kinematic range, 0.006⩽ x ⩽0.6 and 0.5⩽ Q 2 ⩽55GeV 2 , and include the first precise data at small x , where large scaling violations are observed. The data agree with earlier results from SLAC and BCDMS but exhibit differences with respect to those of EMC-NA2. Extrapolations to small x of recent phenomenological parton distributions are shown to disagree with the present results.
No description provided.
No description provided.
No description provided.