Evidence for the backward production of the B(1235) meson in the final state π+p→pfπ+ω at 11.46 GeV/c with σ(|u′|<1.5 GeV2)=1.28±0.26 μb is presented. When nucleon exchange is assumed to dominate, estimates for the SU(3) mixing parameter FD as well as the B coupling to the nucleon-antinucleon are given. Some indication of a narrow enhancement at M(π+ω)≃1.03 GeV/c2 is seen, but confirmation of this as a resonant state is not yet possible.
No description provided.
No description provided.
Results are presented for the quasi two-body hypercharge exchange reactions of the type 0−1/2+→2+1/2+:$$\begin{gathered}
No description provided.
No description provided.
No description provided.
Q-meson production is studied in the hypercharge exchange reaction π-p → (Kππ)Λ at 3.95 GeV/c by selecting events witht(π- →Kππ)>1.2GeV2. An enhancement with a mass of 1294±10 MeV and a width of 66±15 MeV is observed in the (Kππ) mass distribution. A spin-parity analysis of the (Kππ) decay Dalitz plot shows the enhancement to be in theJP=1+S(Kϱ) wave and is therefore attributed toQ1-meson production. No evidence is found for the decayQ1→K0ω but limited statistics allow only placing an upper limit of 30% for the decay ratioKω/Kϱ0. TheQ1 production cross section fort(π- →Kππ)>1.2GeV2 is 8±1.3 μb. No evidence is found for the process π-p→Q2Λ withQ2→K*π for which the partial wave analysis gives an upper cross section limit of 2.5 μb at the 95% confidence level.
PRODUCTION OF Q1 OF MASS 1294 +- 10 MEV, WIDTH 66 +- 15 MEV. IN BACKWARD HEMISPHERE, CROSS SECTION IS <0.5 MUB (CL = 95 PCT).
UPPER LIMIT FOR PRODUCTION OF Q2 OF MASS AROUND 1400 MEV.
Exotic exchange processes observed in K − p and π − p scattering in the neighbourhoood of 4 GeV/ c are analysed in terms of standard models. Some new data on π − p induced processes are presented and used in the analysis. Regge-Regge cut predictions are found to be smaller than the data up to these energies. Baryonium exchange models are shown to be indistindistinguishable from Regge cut models as regards their phenomenological predictions. The double scattering quark model of Białas and Zalewski is compatible with data on the exotic exchange production of Σ and Y ∗ (1385), but fails for Ξ and Ξ ∗ (1530) production. Modifications of this model are discussed.
No description provided.
FORWARD (SMALL -T) CROSS SECTIONS. THE K- P CROSS SECTIONS ARE COMPUTED FROM THE ACNO DATA AT 4.2 GEV/C, M. MAZZUCATO ET AL., NP B178, 1 (1981).
BACKWARD (SMALL -U) CROSS SECTIONS.
J/ ψ production at 40 GeV/ c by π ± , K ± , p and p incident on hydrogen has been studied and results compared with those obtained on tungsten in the same experiment. On hydrogen, J/ψ cross-section ratios relative to π − have been measured to be (for x F > 0) σ(π − ) : σ(π + ) : σ( p ) : σ( p ) = 1 : (0.78 ± 0.09) : (0.83 ± 0.35) : (0.07 ± 0.04) . The suppression of the proton induced cross sections shows the importance of calence quark-antiquark fusiin J/ψ production at this energy (i.e. M J 2 / ψ / s =0.13).
ERRORS ONLY STAT.
ERRORS ONLY STAT.
No description provided.
The reactionsπ−p→K0(890) Λ,K0(890)Σ0 andK0(890)Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections, density matrix elements of the vector meson and hyperon polarizations are presented. A transversity amplitude analysis is performed for each of the reactions. The results are compared with those obtained for the SU(3) related processesK−p→ϕΔ, ϕΣ0, ϕΣ0(1385) andϱ−Σ+(1385) and with predictions of the additive quark model and SU(6) sum rules.
BREIT-WIGNER FIT WITH BACKGROUND POLYNOMIAL.
BACKWARD CROSS SECTION.
TOTAL CROSS SECTION USING SLICING TECHNIQUE. FORWARD (-TP < 1.2 GEV**2) CROSS SECTION IS 25 +- 2 MUB: DOUBLE MASS CUT GIVES 20 +- 7 PCT BACKGROUND CONTAMINATION.
The reactionsπ−p→K0∑0(1385) andπ−p→K+∑−(1385) are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to approximately 90 events/μb. The total and differential cross sections and the density matrix elements of the Σ(1385) are presented. The results are compared with those obtained for the related processesπpp→K+∑+(1385) and\(K^ -p \to \pi ^ \mp\sum ^ \pm(1385)\) in this energy range. Evidence is presented for the existence of production mechanisms with exotic exchanges in thet channel.
FROM THE CHANNEL PI- P --> LAMBDA K0 PI0 WHICH HAS A CROSS SECTION OF 72 +- 4 MUB.
FROM THE CHANNEL PI- P --> LAMBDA K+ PI- WHICH HAS A CROSS SECTION OF 79 +- 3 MUB.
FORWARD CROSS SECTION.
The reactions π−p→K0Λ,K0Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections and hyperon polarizations are presented and compared with existing data from earlier electronic experiments. The data in the forward hemisphere are used to perform an amplitude analysis of the 0−1/2+→0−1/2+ hypercharge exchange processes.
No description provided.
No description provided.
No description provided.
In a high statistics (90 events/μb) bubble chamber experiment, the reactions π − p→K s 0 K ± π ∓ n have been studied at 3.95 GeV/ c . A significant enhancement is observed in the ( K K π) system which we attribute to the production of the E(1420) meson. For its mass, M , and width, Λ, we find M =1426±6 MeV and Γ =40±15 MeV. The E(1420) quantum numbers are determined to be I G J P =0 + 1 + with a branching ratio E → K ∗ K + c.c E →[δπ+( K ∗ K + c.c. )]=0.86±0.12 , where δ→ K K . The cross section for the reaction π − p→En, with E→K 0 K ± π ± , is 8.2±1.0 μ b. Forward and backward productions are observed in the approximate ratio 2:1. The SU(3) assignment of the E(1420) meson is discussed.
BACKGROUND SUBTRACTED.
No description provided.
No description provided.
The ratio R of the differential cross sections for π - p→ η ′n and π - p → η n has been measured with high statistics and small systematic errors at 8.45 GeV/ c . R is generally interpreted as the relative content of nonstrange, ground-state quarks in η' and η. We find that R decreases with increasing ⋎ t ⋎; however, extrapolation to t =0 gives R (0) = 0.672 ± 0.032 (statistical) ± 0.47 (systematic) for the dominant spin flip cross sections, and R (0) = 0.500 ± 0.035 for the spin non-flip, in excellent agreement with results at higher energy. An improved value of the branching fraction ( η '→ γγ )/( η '→all) of 0.0200 ± 0.0018 is obtained.
No description provided.
No description provided.