Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys.C 53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433

Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.

1 data table match query

No description provided.


K0(s) and Lambda0 production studies in p anti-p collisions at s**(1/2) = 1800 and 630-GeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 72 (2005) 052001, 2005.
Inspire Record 681320 DOI 10.17182/hepdata.42774

We present a study of the production of K_s^0 and Lambda^0 in inelastic pbar-p collisions at sqrt(s)= 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K_s^0 and Lambda^0 multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and <p_T> of K_s^0 and Lambda^0 on charged particle multiplicity are reported. Systematic comparisons are performed for the full sample of inelastic collisions, and for the low and high momentum transfer subsamples, at the two energies. The p_T distributions extend above 8 GeV/c, showing a <p_T> higher than previous measurements. The dependence of the mean K_s^0(Lambda^0) p_T on the charged particle multiplicity for the three samples shows a behavior analogous to that of charged primary tracks.

21 data tables match query

K0S inclusive invariant PT distribution for MB events at a centre of mass energy 1800 GeV.

K0S inclusive invariant PT distribution for MB events at a centre of mass energy 630 GeV.

LAMBDA inclusive invariant PT distribution for HARD events at a centre of mass energy 1800 GeV.

More…

The Underlying event in hard interactions at the Tevatron anti-p p collider

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 072002, 2004.
Inspire Record 647490 DOI 10.17182/hepdata.22135

For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.

1 data table match query

Average PT inside the max and min cone for cm energy 1800 GeV.


Properties of jets in Z boson events from 1.8-TeV anti-p p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 448-453, 1996.
Inspire Record 416570 DOI 10.17182/hepdata.42318

We present a study of events with Z bosons and hadronic jets produced in $\overline{p}p$ collisions at a center-of-mass energy of 1.8 TeV. The data consist of 6708 $Z \rightarrow e~+e~-$ decays from 106 pb$~{-1}$ of integrated luminosity collected using the CDF detector at the Tevatron Collider. The Z $+ \ge n$ jet cross sections and jet production properties have been measured for n = 1 to 4. The data compare well to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.

3 data tables match query

Transverse energy distribution of the first highest ET jet in >= 1jet events.. Data read from plots.

Transverse energy distribution of the second highest ET jet in >= 2jet events.. Data read from plots.

Transverse energy distribution of the third highest ET jet in >= 3jet events.. Data read from plots.


Further Properties of High-Mass Multijet Events at the Fermilab Proton-Antiproton Collider

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 54 (1996) 4221-4233, 1996.
Inspire Record 418504 DOI 10.17182/hepdata.52862

The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.

3 data tables match query

Two-body energy sharing variable XA in 4-jet events.

Two-body energy sharing variable XA and XC in 5-jet events.

Single-body mass fraction distribution FA for two-body systems in 5-jet events.


Properties of six jet events with large six jet mass at the Fermilab proton - anti-proton collider

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 56 (1997) 2532-2543, 1997.
Inspire Record 442265 DOI 10.17182/hepdata.53980

We describe the properties of six-jet events, with the six-jet mass exceeding 520GeV/c2, produced at the Fermilab proton-antiproton collider operating at a center-of-mass energy of 1.8 TeV. Observed distributions for a set of 20 multijet variables are compared with predictions from the HERWIG QCD parton shower Monte Carlo program, the NJETS leading order QCD matrix element Monte Carlo program, and a phase-space model in which six-jet events are distributed uniformly over the kinematically allowed region of the six-body phase space. In general the QCD predictions provide a good description of the observed six-jet distributions.

3 data tables match query

Two-body energy sharing distributions, XA,of 2-jet combinations in reducing from 4-jet to 3-jet final states.

Two-body energy sharing distributions, XC,of 2-jet combinations in reducing from 5-jet to 4-jet final states.

Two-body energy sharing distribution, XE, of 2-jet combinations in reducing from 6-jet to 5-jet final states.


Measurement of the J/psi meson and b-hadron production cross sections in p anti-p collisions at s(NN)**(1/2) = 1960-GeV

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev.D 71 (2005) 032001, 2005.
Inspire Record 668026 DOI 10.17182/hepdata.22119

We present a new measurement of the inclusive and differential production cross sections of $J/\psi$ mesons and $b$-hadrons in proton-antiproton collisions at $\sqrt{s}=1960$ GeV. The data correspond to an integrated luminosity of 39.7 pb$^{-1}$ collected by the CDF Run II detector. We find the integrated cross section for inclusive $J/\psi$ production for all transverse momenta from 0 to 20 GeV/$c$ in the rapidity range $|y|<0.6$ to be $4.08 \pm 0.02 (stat)^{+0.36}_{-0.33} (syst) \mu {\rm b}$. We separate the fraction of $J/\psi$ events from the decay of the long-lived $b$-hadrons using the lifetime distribution in all events with $p_T(J/\psi) > 1.25$ GeV/$c$. We find the total cross section for $b$-hadrons, including both hadrons and anti-hadrons, decaying to $J/\psi$ with transverse momenta greater than 1.25 GeV/$c$ in the rapidity range $|y(J/\psi)|<0.6$, is $ 0.330 \pm 0.005 (stat) ^{+0.036}_{-0.033} (syst) ~\mu{\rm b}$. Using a Monte Carlo simulation of the decay kinematics of $b$-hadrons to all final states containing a $J/\psi$, we extract the first measurement of the total single $b$-hadron cross section down to zero transverse momentum at $\sqrt{s}=1960$ GeV. We find the total single $b$-hadron cross section integrated over all transverse momenta for $b$-hadrons in the rapidity range $|y|<0.6$ to be $ 17.6 \pm 0.4 (stat)^{+2.5}_{-2.3} (syst) \mu{\rm b}$.

1 data table match query

Differential cross section times branching ratio (5.88+-0.10PCT) into mu+mu- as a function of transverse momentum for the rapidity range -0.6 to 0.6 at a centre-of-mass energy of 1960 GeV.


Measurement of the Inclusive Jet Cross Section at the Fermilab Tevatron p-pbar Collider Using a Cone-Based Jet Algorithm

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 78 (2008) 052006, 2008.
Inspire Record 790693 DOI 10.17182/hepdata.52402

We present a measurement of the inclusive jet cross section in p-pbar collisions at sqrt{s}=1.96 TeV based on data collected by the CDF II detector with an integrated luminosity of 1.13 fb^-1. The measurement was made using the cone-based Midpoint jet clustering algorithm in the rapidity region of |y|<2.1. The results are consistent with next-to-leading-order perturbative QCD predictions based on recent parton distribution functions (PDFs), and are expected to provide increased precision in PDFs at high parton momentum fraction x. The results are also compared to the recent inclusive jet cross section measurement using the k_T jet clustering algorithm, and we find that the ratio of the cross sections measured with the two algorithms is in agreement with theoretical expectations over a large range of jet transverse momentum and rapidity.

6 data tables match query

Relative contibutions to the total jet energy scale uncertainty from the following sources.SYS1A = pT-independent uncertainty. SYS1B = repsonse to hadrons with p < 12 GeV. SYS1C = repsonse to hadrons with 12 < p < 20 GeV.SYS1C = repsonse to hadrons with p > 20 GeV.

Systematic errors for data with absolute rapidity from the following sources:- SYS1 = jet energy scale,SYS2 = dijet pT balance - nominal,SYS3= dijet pT balance - additional,SYS4 = pileup,SYS5 = unfolding,SYS6 = pT-spectra,SYS7 = resolution.

Systematic errors for data with absolute rapidity from the following sources:- SYS1 = jet energy scale,SYS2 = dijet pT balance - nominal,SYS3= dijet pT balance - additional,SYS4 = pileup,SYS5 = unfolding,SYS6 = pT-spectra,SYS7 = resolution.

More…

Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Eur.Phys.J.C 71 (2011) 1512, 2011.
Inspire Record 871366 DOI 10.17182/hepdata.56004

Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.

1 data table match query

Dijet double-differential cross sections in the |rapidity(max)| range 520 to 800, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.


Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

2 data tables match query

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The average charged-particle muliplicity per unit of rapidity in the pseudorapidity region -2.5 to 2.5 for events with 2 or more charged particles as a function of the centre-of-mass energy.