Date

Measurement of the photon structure function F2 (gamma) in the reaction e+ e- ---> e+ e- + hadrons at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 61 (1994) 199-208, 1994.
Inspire Record 358863 DOI 10.17182/hepdata.48474

We present measurements of the hadronic photon structure functionF2γ(x), in twoQ2 ranges with mean values of 5.9 GeV2 and 14.7 GeV2. The data were taken by the OPAL experiment at LEP, with\(\sqrt s\) close to theZ0 mass and correspond to an integratede+e− luminosity of 44.8 pb−1. In the context of a QCD-based model we find the quark transverse momentum cutoff separating the vector meson dominance (VMD) and perturbative QCD regions to be 0.27±0.10 GeV. We confirm that there is a significant pointlike component of the photon when the probe photon hasQ2>4 GeV2. Our measurements extend to lower values ofx than any previous experiment, and no increase ofF2γ(x) is observed.

2 data tables

Additional overall systematic error 5.9% not included.

Additional overall systematic error 5.9% not included.


Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys.C 53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433

Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.

22 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the photon structure function F2

The AMY collaboration Sasaki, T. ; Yamagishi, Y. ; Tanaka, R. ; et al.
Phys.Lett.B 252 (1990) 491-498, 1990.
Inspire Record 299056 DOI 10.17182/hepdata.29524

The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.

4 data tables

X dependence at Q**2 = 73 GeV**2 for light quark data.

X dependence at Q**2 = 73 GeV**2 for total data.

Photon structure function F2 for total data.

More…

Measurement of the Photon Structure Function F2 (Gamma) (x, Q**2) in the Region 0.2-GeV**2 < 7-GeV**2

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Z.Phys.C 34 (1987) 1, 1987.
Inspire Record 234578 DOI 10.17182/hepdata.15803

We present a measurement of the photon structure functionF2γ in the reactionee→eeX forQ2 in the range 0.2<Q2<7 GeV2, using 9,200 multihadron events obtained with the TPC/Two-Gamma detector at PEP. The data have been corrected for detector effects using a regularized unfolding procedure and are presented as a function ofx andQ2. The structure function shows scaling in the region 0.3<Q2<1.6 GeV2,x<0.3 and rises for higherQ2. AtQ2=5.1 GeV2 the results are compared with QCD and, within the scheme of Antoniadis and Grunberg, rather conservative bounds for the QCD scale parameter of 133±50<\(\Lambda _{\overline {{\rm M}S} } \)<268±98 MeV are obtained. A study of the final state structure shows that the rise ofF2γ is consistent with being entirely due to the pointlike component of the photon.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Nucleon Structure Functions from High-Energy Neutrino Interactions with Iron and QCD Results

MacFarlane, D. ; Purohit, M.V. ; Messner, R.L. ; et al.
Z.Phys.C 26 (1984) 1-12, 1984.
Inspire Record 195928 DOI 10.17182/hepdata.16212

Nucleon structure functions obtained from neutrino and anti-neutrino scattering on iron nuclei at high energies (Ev=30 to 250 GeV) are presented. These results are compared with the results of other lepton-nucleon scattering experiments. The structure functions are used to test the validity of the Gross-Llewellyn-smith sum rule, which measures the number of valence quarks in the nucleons, and to obtain leading and second order QCD fits.

19 data tables

Measured charged current total cross section.

No description provided.

No description provided.

More…

Measurement of the Nucleon Structure Function in Iron Using 215-GeV and 93-GeV Muons

Clark, A.R. ; Johnson, K.J. ; Kerth, L.T. ; et al.
Phys.Rev.Lett. 51 (1983) 1826, 1983.
Inspire Record 191249 DOI 10.17182/hepdata.23473

This Letter presents measurements of the nucleon structure function F2(x,Q2) based on the deep-inelastic scattering of 215- and 93-GeV muons in the iron multimuon spectrometer at Fermilab. With use of a lowest-order QCD calculation, a value of ΛLO=230±40(stat.)±80(syst.) MeV/c is found.

7 data tables

No description provided.

No description provided.

No description provided.

More…