Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au+Au and p+p collisions at $\sqrt{s_{\text{NN}}} = 200 \text{GeV}$ in STAR are presented. The trigger jet population in Au+Au collisions is biased towards jets that have not interacted with the medium, allowing easier matching of jet energies between Au+Au and p+p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum ($p_{\text{T}}^{\text{assoc}}$) and enhanced at low $p_{\text{T}}^{\text{assoc}}$ in 0-20% central Au+Au collisions compared to p+p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions.
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands Au+Au(0.5-1 GeV).
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands p+p(0.5-1).
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands Au+Au(4-6 GeV).