Angular distributions are presented for p¯−p elastic scattering at 8 and 16 GeV/c for |t|<1.3 (GeV/c)2. At both energies there is structure in the differential cross sections in the region 0.5<~|t|<~1.0 (GeV/c)2, similar to that observed at lower energies. The diffraction peak continues to expand with increasing incident momentum.
No description provided.
No description provided.
No description provided.
The K ∗− spectrum in the reaction K − +p → K ∗− +p has been measured at beam momenta 10.9, 13.4 and 15.9 GeV/ c using the missing mass technique. Production of the L(1770), and a Q-K ∗ (1420) enhancement are observed. Differential cross sections in the range of momentum transfer 0.12 < | t pp | < 0.40 (GeV/ c ) 2 are given. The L meson is observed with a width Γ = 100 ± 26 MeV. The mass spectrum between the L and 2.5 GeV does not show significant structure.
No description provided.
No description provided.
A missing mass spectrometer search was made for several two-body, double charge exchange reactions, including backward K −p and p̄p elastic scattering at 8 and 16 GeV/ c and small momentum transfer. No examples of any of these processes were observed.
'1'. '2'. '3'.
No description provided.
Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
In a single-arm spectrometer experiment, high-precision measurements of dσdt for π−p, K−p, and p¯p elastic scattering have been made at 8 and 16 GeV/c. The π−p data show rich structure at 8 GeV/c, indicative of strong non-Pomeron contributions, while the 16-GeV/c data are much smoother. For −t≳1 (GeV/c)2 there is a strong s dependence while there is very little for −t<1 (GeV/c)2. For p¯p scattering the forward region is smoothly diffractive for −t<0.4 (GeV/c)2 and shows antishrinkage. The exponential slope parameter b is measured to be 12.36 ± 0.04 (GeV/c)−2 at 8 GeV/c and 11.40 ± 0.04 (GeV/c)−2 at 16 GeV/c. The structure near −t=0.6 (GeV/c)2 seen at lower energies is still obvious at 16 GeV/c. The K−p data show some structure at 8 GeV/c, but can be represented adequately by a quadratic exponential form. At 16 GeV/c the K−p angular distribution shows antishrinkage and lies above the 8-GeV/c cross section for 0.11<−t<0.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.
We report on a measurement of the missing-mass, (mm)−, spectrum from the reaction π−+p→(mm)−+p at 8 GeV. The data contain 6500 events in the R peak (M2=2.72±0.02 GeV2, Γ=139±31 MeV). The R shape is consistent with either a single Breit-Wigner or several wide resonances, as suggested by bubble-chamber experiments, but inconsistent with the series of narrow resonances reported by the CERN missing-mass group.
No description provided.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.
None
THE STATISTICAL ERROR OF THE DATA CAN BE OBTAINED AS SQRT(D(N)/ D(YRAP)/NF) WHERE THE NORMALIZATION FACTOR NF = 971.
THE STATISTICAL ERROR OF THE DATA CAN BE OBTAINED AS SQRT(D(N)/ D(YRAP)/NF) WHERE THE NORMALIZATION FACTOR NF = 1628.
THE STATISTICAL ERROR OF THE DATA CAN BE OBTAINED AS SQRT(D(N)/ D(YRAP)/NF) WHERE THE NORMALIZATION FACTOR NF = 2135.
Results are presented of differential cross-section measurements for the reaction π − p→ π 0 n; π 0 → γγ at 22 incident pion momenta between 618 and 2724 MeV/ c . The results are in good agreement with those of other experiments. They represent the first comprehensive set of high statistics measurements of the π − p charge-exchange differential cross section at closely spaced momenta in the resonance region.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.