We present the final analysis of the nuclear effects on the cross section of dimuon production, using simultaneously a hydrogen and a platinum target in a 150, 200 and 280 GeV pion beam. For the dimuon mass interval 4.1 to 8.5 GeV, the ratio of the cross sections is in agreement with the Drell-Yan model within a 10% error, mainly due to systematics. The variation of this ratio with the dimuon mass, x 1 and x 2 is also in good agreement, and no variation with the transverse momentum is observed.
No description provided.
No description provided.
No description provided.
We present the results of a study of the inclusive reaction ν¯p→μ+X0 for antineutrino energies from 5 to 150 GeV. The data were obtained by exposing the Fermi National Accelerator Laboratory hydrogen-filled 15-foot bubble chamber to a wide-band antineutrino beam. This is the first high-energy antineutrino experiment in which a pure proton target was used. The experimental problems of selecting the required sample of charged-current antineutrino-induced events are discussed in detail. A Monte Carlo simulation of the experiment is used to provide correction factors to the measured distributions. A measurement of the x dependence of the inelasticity (y) distributions gives the proton structure functions F2ν¯p(x) and xF3ν¯p(x) up to an overall normalization constant. When expressed in terms of the quark-parton model, the quark distributions u(x) and d¯(x)+s¯(x) are determined. The results for u(x) are found to be in excellent agreement with models based on fits to electron and muon scattering data. Using these results to fix the u(x) normalization, an absolute measurement is made of x[d¯(x)+s¯(x)], the antiquark momentum distribution.
VALUES OF Q**2 ASSOCIATED WITH THE FOLLOWING TABLE ARE.... 2.2 , 3.5 , 3.4 , 4.4 , 4.7 , 5.0 , 6.0 , 6.5 , 7.7 , 8.0.
Deep inelastic scattering cross sections have been measured with the CERN SPS muon beam at incident energies of 120 and 200 GeV. Approximately 100 000 events at each energy are used to obtain the structure function F 2 ( x , Q 2 ) in the kinematic region 0.3< x <0.7 and 25 GeV 2 < Q 2 <200 GeV 2 .
No description provided.
No description provided.
No description provided.
A new measurement of the ratio R = σ L / σ T of longitudinal and transverse structure functions in neutrino interactions on iron between 30 and 190 GeV neutrino energy is reported. The result is given as a function of the scale parameter x and the inelasticity ν of the interaction. The average value is R = 0.10 ± 0.07 around ν ≈ 50 GeV and is in accordance with a prediction from the QCD theory.
No description provided.
No description provided.
The first observation of μ + e + events produced in antineutrino interactions using the Fermilab 15 ft bubble chamber is reported. The relative yield of μ + e + events is (4.8 −3.2 +5.3 ) × 10 −4 of all charged-current events with antineutrino energy greater than 10 GeV. The observed V 0 rate is 1.0 −1.0 +1.2 per μ + e + event. Possible sources of these events are discussed.
No description provided.
We present results on the experimental study of inelastic charged-current antineutrino-nucleon scattering in the energy range of 10–200 GeV. The data sample, consisting of about 6500 antineutrino-induced events, was obtained in the Fermilab 15 ft bubble chamber filled with a heavy neon-hydrogen mixture. The differential cross sections for ν μ N interactions are presented in terms of scaling variables x and y . The structure functions F 2 ν and xF 3 ν have been evaluated as functions of x and E ν . A deviation from the scaling hypothesis, similar to those found in other experiments on inelastic lepton-nucleon scattering, has been observed. The data are interpreted in the framework of the quark-parton model. Quark and antiquark distributions and their energy dependences are presented.
No description provided.
No description provided.
No description provided.
Charged-current neutrino interactions have been analysed in a sample of pictures from BEBC equipped with a TST. Using a method independent of both the neutrino flux and nuclear interaction corrections, the ratio R = σ n / σ p has been measured. The result is R =1.98±0.19 for the ratio of total cross sections. Bjorken x distributions for proton and neutron targets and for u and d quarks are compared.
No description provided.
No description provided.
No description provided.
Data on hadron production by e + e − annihilation at c.m. energies between 12 and 36.6 GeV have been collected using the JADE detector. They have been analysed in terms of single-photon and weak neutral-current exchange assuming production of quark-antiquark pairs with only d, u, s, c and b quarks to produce values for the quark weak neutral-current couplings. A further analysis in terms of the Glashow-Salam-Weinberg theory produced the result, sin 2 θ W = 0.22 ± 0.08 . The theory has therefore been tested in a new energy domain and within the context of the neutral weak couplings of the first, second and third generation quarks.
No description provided.
WIDTH(Z) = 2.5 GEV WAS ASSUMED. CONST(N=SIN2TW) WAS DETERMINED FROM RATIO(HADRONS/MU). FIRST ORDER QCD.
The final states of charged hadrons produced in 280 GeV μp scattering are analysed with respect to their planarity and jet structure. Distributions of p ⊥ 2 in and p ⊥ out 2 are presented. A two jet structure in the forward hemisphere is observed for events with high p ⊥ tracks are predicted by QCD models.
PTIN**2 is the sum of the PTIN components squared.
PTOUT**2 is the sum of the PTOUT components squared.
We report a high-statistics study of the reaction p+W→μ++μ−+X with use of an intense 400-GeV/c proton beam, a magnetized-iron beam dump, and a wide-acceptance detector. Using data near xF=0, we have extracted the nucleon sea-quark distribution and find it to be a factor 1.6±0.3 larger than that obtained by inelastic charged-current neutrino scattering. We then compare the Drell-Yan prediction with our data including the previously unexplored region of large xF and find excellent agreement for a wide range of μ-pair invariant mass.
Dimuon mass mass distribution at XFP=0.1.
Dimuon production for varying mass as function of XFP.
Dimuon production for varying mass as function of XFP.