Antideuteron and anti-helium-3 production in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 262301, 2001.
Inspire Record 561876 DOI 10.17182/hepdata.102316

The first measurements of light antinucleus production in Au+Au collisions at RHIC are reported. The observed production rates for antideuterons and antihelions are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at SPS energy. These analyses also indicate that the antihelion freeze-out volume is smaller than the antideuteron freeze-out volume.

3 data tables

Coalescence parameters $B_2$ and $B_3$ in Au+Au collisions at 130 GeV.

Invariant yields of $\overline{d}$ and $\overline{p}$. Systematic errors are estimated to be 15%.

Invariant yields of $^3\overline{\mathrm{He}}$ and $\overline{p}$. Systematic errors are estimated to be 15%.


Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 032301, 2003.
Inspire Record 588226 DOI 10.17182/hepdata.98579

Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T<2$ GeV/c is consistent with collective hydrodynamical flow calculations. At $\pT>3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.

4 data tables

$v_{2}$($p_{T}$) for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}%$.

$v_{2}$($p_{T}$) for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^{g}/dy$ = 1000 (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).

High $p_{T}$ azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta\eta|$ < 0.5 (solid circles) and scaled correlation function for 0.5 < $|\Delta\eta|$ < 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).

More…

Azimuthal anisotropy of K0(S) and Lambda + anti-Lambda production at mid-rapidity from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 127 (2021) 089901, 2021.
Inspire Record 587154 DOI 10.17182/hepdata.102318

We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.

8 data tables

$v_2$ of $K_s^0$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $K_s^0$ as a function of $p_T$ for 11-45% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $\Lambda+\bar{\Lambda}$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

More…

Centrality dependence of high p(T) hadron suppression in Au+Au collisions at s**(NN)(1/2) = 130-GeV

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 202301, 2002.
Inspire Record 588808 DOI 10.17182/hepdata.95885

Inclusive transverse momentum distributions of charged hadrons within 0.2<pT<6.0 GeV/c have been measured over a broad range of centrality for Au+Au collisions at sqrt(sNN)=130 GeV. Hadron yields are suppressed at high pT in central collisions relative to peripheral collisions and to a nucleon-nucleon reference scaled for collision geometry. Peripheral collisions are not suppressed relative to the nucleon-nucleon reference. The suppression varies continuously at intermediate centralities. The results indicate significant nuclear medium effects on high pT hadron production in heavy ion collisions at high energy.

3 data tables

Inclusive $p_T$ distributions of ($h^+ + h^−)/2$. Non-central bins are scaled down by the indicated factors. The combined statistical and systematic errors are shown. Curves are fits to Eq. (2). Hash marks at the top indicate bin boundaries for $p_T>1.5$ GeV/c.

Ratio of charged hadron yields within $|\eta| < 0.5$ for central over peripheral collisions, normalized to $\langle Nbin\rangle$.

$R_{AA}$($p_T$) for various centrality bins, for Au+Au relative to an NN reference spectrum. Error bars are described in the text. Errors between different $p_T$ and centrality bins are highly correlated.


Coherent rho0 production in ultra-peripheral heavy ion collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 272302, 2002.
Inspire Record 588142 DOI 10.17182/hepdata.102319

The STAR collaboration reports the first observation of exclusive rho^0 photo-production, AuAu->AuAu rho^0, and rho^0 production accompanied by mutual nuclear Coulomb excitation, AuAu->Au*Au*rho^0, in ultra-peripheral heavy-ion collisions. The rho^0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt(s_NN)=130GeV agree with theoretical predictions treating rho^0 production and Coulomb excitation as independent processes.

3 data tables

Differential cross section $d\sigma(\gamma Au \rightarrow \rho Au)/dt$ of $\rho^0$ candidates

Differential cross section $d\sigma/dM_{\pi\pi}$ for two-track (xn,xn) events with pair $p_T<150$ MeV/$c$

Total background in the differential cross section $d\sigma/dM_{\pi\pi}$


Disappearance of back-to-back high p(T) hadron correlations in central Au+Au collisions at s(NN)**(1/2) = 200-GeV

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 082302, 2003.
Inspire Record 600652 DOI 10.17182/hepdata.101748

Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.

9 data tables

Azimuthal distributions of opposite-sign pairs in p+p collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

Azimuthal distributions of same-sign pairs in p+p collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

Azimuthal distributions of same-sign and opposite-sign pairs in minimum bias and background-subtracted 0-10% central Au+Au collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

More…

Elliptic flow from two- and four-particle correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 66 (2002) 034904, 2002.
Inspire Record 587825 DOI 10.17182/hepdata.98926

Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.

30 data tables

Correlation between the event plane angles determined from pairs of subevents partitioned randomly (circles), partitioned with opposite signs of pseudorapidity (squares) and partitioned with opposite signs of charge (crosses). The correlation is plotted as a function of centrality, namely, charged particle multiplicity $n_{ch}$ divided by the maximum observed charged multiplicity, $n_{max}$.

The event plane resolution for full events as a function of centrality, using randomly partitioned subevents with (circles) and without (triangles) $p_{t}$ weight.

Elliptic flow signal $v_{2}$ as a function of centrality, from study of the correlation between particle pairs consisting of randomly chosen particles (circles), particles with opposite signs of charge (crosses), particles with the same signs of charge (triangles), and particles with opposite signs of pseudorapidity (squares).

More…

Elliptic flow in Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Ackermann, K.H. ; Adams, N. ; Adler, C. ; et al.
Phys.Rev.Lett. 86 (2001) 402-407, 2001.
Inspire Record 533414 DOI 10.17182/hepdata.93232

Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

2 data tables

Elliptic flow as a function of centrality defined as nch/nmax. Also given is epsilon, the initial space eccentricity of the overlap region, as well as the cumulative fraction of events starting with the most central. From the results of the study of non-flow contributions by different subevent selections and the maximum magnitudes of the first and higher-order harmonics, we estimate a systematic error for v2 of about 0.007, with somewhat smaller uncertainty for the mid-centralities where the resolution of the event plane is high.

Elliptic flow as a function of transverse momen-tum for minimum bias events


Event-by-event < p(t) > fluctuations in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 71 (2005) 064906, 2005.
Inspire Record 626905 DOI 10.17182/hepdata.102942

We present the first large-acceptance measurement of event-wise mean transverse momentum mean p_t fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt{s_{NN}} = 130 GeV. The observed non-statistical mean p_t fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise mean p_t distribution is 13.7 +/- 0.1(stat) +/- 1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range |eta|<1, 2pi azimuth and 0.15 < p_t < 2 GeV/c. The width excess varies smoothly but non-monotonically with collision centrality, and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported mean p_t fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to mean p_t mean fluctuations from semi-hard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.

3 data tables

Event frequency distribution on $\sqrt{n}(\langle p_t\rangle - \hat{p}_t)/\sigma\hat{p}_t$ for 80% of primary charged hadrons in $|\eta|$ < 1 for 183k central events

Difference in upper panel between data and gamma reference

Centrality dependences of the measured charge independent (CI) and charge dependent (CD) difference factors $\Delta\sigma_{p_t:n}$ plus the corresponding values extrapolated to 100% tracking efficiency. Statistical errors $\pm$ 0.5 MeV/c; systematic errors are $\pm$ 9%. Difference factors extrapolated to 100% tracking efficiency and no secondary particle contamination. Uncertainties are $\pm$ 12%.


Evidence from d + Au measurements for final-state suppression of high p(T) hadrons in Au + Au collisions at RHIC.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 91 (2003) 072304, 2003.
Inspire Record 621394 DOI 10.17182/hepdata.98576

We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high $p_T$) in minimum bias and central d+Au collisions at $\sqrt{s_{NN}}$=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high $p_T$ previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.

5 data tables

Uncorrected charged particle multiplicity distributions measured in −3.8 < $\eta$ < −2.8 (Au-direction) for d+Au collisions. Points are for minimum bias (triangles) and peripheral (circles, ZDC-d single neutron) collisions. Both are normalized to the total number of d+Au collisions. Histograms are Glauber model calculations.

Inclusive $p_{T}$ distributions for minimum bias and central d+Au collisions, and non-singly diffractive p+p collisions. Hash marks at the top indicate bin boundaries for $p_{T}$ > 3.8 GeV/c.

$R_{AB}(p_{T})$ from Eq. 1 for minimum bias and central d+Au collisions, and central Au+Au collisions. The minimum bias d+Au data are displaced 100 MeV/c to the right for clarity. The error bars are the quadrature sum of the statistical and point-to-point systematic uncertainties. The bands show the normalization uncertainties, which are highly correlated point-to-point and between the two d+Au distributions.

More…