This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 2 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ c-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
The photoproduction of $D^{*\pm} (2010)$ mesons associated with a leading neutron has been observed with the ZEUS detector in $ep$ collisions at HERA using an integrated luminosity of 80 pb$^{-1}$. The neutron carries a large fraction, {$x_L>0.2$}, of the incoming proton beam energy and is detected at very small production angles, {$\theta_n<0.8$ mrad}, an indication of peripheral scattering. The $D^*$ meson is centrally produced with pseudorapidity {$|\eta|<1.5$}, and has a transverse momentum {$p_{\it T} > 1.9$ GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive $D^*$ production is $8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\%$ in the photon-proton center-of-mass energy range {$130
Integrated cross section. The first DSYS error includes the uncertainty in the luminosity and the second DSYS error is due to the knowledge of the branching ratios.
No description provided.
No description provided.
A study of scaling violations in fragmentation functions performed by the ALEPH collaboration at LEP is presented. Data samples enriched in uds, c, b and gluon jets, respectively, together with measurements of the longitudinal and transverse inclusive cross sections are used to extract the fragmentation function for the gluon and for each flavour. The measurements are compared to data from experiments at energies between 22 GeV and 91 GeV and scaling violations consistent with QCD predictions are observed. From this, a measurement of the strong coupling constant α s ( Mz ) = 0.126 ±0.009 is obtained.
No description provided.
No description provided.
No description provided.
This paper presents results on charm photoproduction in the energy interval 40 to 160 GeV, obtained from the high-statistics charm samples of the NA 14/2 experiment at CERN. We measure the charm cross-section, the distributions inxF andp2T and various production ratios and charge asymmetries. The total non-diffractive open-charm cross-section per nucleon is measured to be\(\sigma _{(\gamma N \to c\bar cX)} \) at 〈Eγ〉 =100 GeV. We discuss the photoproduction of charm in terms of theoretical and phenomenological models. We compare the measuredp2T andxF distributions with first-order QCD calculations of photon-gluon fusion and obtain a value for the charm-quark mass ofmc=1.5+0.2−0.1GeV/c2.
D0 cross section assuming branching ratio of D0 --> K- PI+ of 3.65 +- 0.21 PCT.
D+(-) cross section assuming branching ratio of D+ --> K- PI+ PI+ of 8.0 +0.8,-0.7 PCT.
Total non diffractive open charm production cross section allowing for contributions for other charmed particles (D/S and LAMBDA/C). Comparison of data with first order QCD leads to a predicted charm quark mass of 1.5 +0.2,-0.1 GeV.
Results are presented of a measurement of the production of D*+ (D*−) in 250-GeV/c π−N interactions. We observe 2.1±7.8 events corresponding to a charge-D* cross section σ(D*) of 0.4±1.5 μb/nucleon. When averaged with our previous measurement made at 200 GeV/c, the result is σ(D*)=2.3±1.0 μb/nucleon with (dσ/dx)‖x=0=4.6±2.0 μb.
THIS DATA FROM PREVIOUS PUBLICATION : PRL 46, 761 (1981).
No description provided.
No description provided.