Electromagnetic form-factors of the proton at low four-momentum transfer

Borkowski, F. ; Peuser, P. ; Simon, G.G. ; et al.
Nucl.Phys.A 222 (1974) 269-275, 1974.
Inspire Record 94754 DOI 10.17182/hepdata.37116

Electron-proton elastic scattering cross sections were measured at low four-momentum transfers squared ( q 2 from 0.13 to 2.15 fm −2 ) at six different energies between 150 and 275 MeV. The electric ( G E ) and magnetic ( G M ) form factors of the proton have been determined by Rosenbluth plots and independently by using analytical functions for the form factors to fit the cross sections. The electric form factor is found to deviate significantly from the dipole fit. From the slope of the form factor functions at q 2 = 0 the rms radii of the charge and the magnetic moment distribution were determined. The charge rms radius is found to be more than 10% larger than the value given by the dipole fit.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic Form-Factors of the Proton at Low Four-Momentum Transfer

Borkowski, F. ; Peuser, P. ; Simon, G.G. ; et al.
Nucl.Phys.B 93 (1975) 461-478, 1975.
Inspire Record 850 DOI 10.17182/hepdata.31992

The 300 MeV electron linear accelerator of Mainz has been used to measure the angular dependence of the electron-proton elastic scattering cross sections at seven different energies for squared four-momentum transfers between 0.13 and 4.7 fm −2 . The proton form factors have been extracted from the cross sections by means of Rosenbluth plots and by fitting parametrized analytical functions directly to the cross sections. The best fit is compared to the data of other laboratories. The previously reported deviations from the dipole fit have been confirmed. From the form factors at q 2 <0.9 fm 2 the proton r.m.s. radius has been determined. A determination of the spectral function of the nucleon isovector form factor G E V in the time-like is obtained using a realistic ϱ resonance.

9 data tables

No description provided.

No description provided.

No description provided.

More…

COULOMB - NUCLEAR INTERFERENCE IN PROTON DEUTERIUM ELASTIC SCATTERING AT 600-MEV AND THE REAL PART OF P N SCATTERING AMPLITUDE

Gardes, J. ; Jargeaix, B. ; Lefort, A. ; et al.
Nuovo Cim.A 61 (1981) 121-132, 1981.
Inspire Record 170137 DOI 10.17182/hepdata.37549

The differential cross-sections for the elastic scattering of protons on deuterium have been measured at 600 MeV in the |t| range between 0.003 and 0.030 (GeV/c)2. The results are analysed by using the Bethe and Glauber formalisms taking into account spin effects in deuterium wave function and nucleon-nucleon amplitudes. The ratio between the real and the imaginary parts of the spin-independent protonneutron amplitude αpn deduced from dispersion calculations and phase shift analysis is compared with experimental results.

1 data table

No description provided.


Study of $\bar{p} p$ Elastic Scattering in the Momentum Range 374-{MeV}/$c$ to 680-{MeV}/$c$

Sakamoto, S. ; Hashimoto, T. ; Sai, F. ; et al.
Nucl.Phys.B 195 (1982) 1-11, 1982.
Inspire Record 10829 DOI 10.17182/hepdata.34175

p p elastic total and differential cross sections were measured at 17 incident momenta in the range 374–680 MeV/ c . No prominent feature was seen in them to clearly indicate the existence of the S-meson. There is, however, a small enhancement at the S-meson mass, which is equivalent to the elastic total cross section of 4.6 ± 2.1 mb. The behavior of the Legendre expansion coefficients of the angular distributions with incident momentum agrees well the predictions of the OBE model of Bryan and Phillips.

6 data tables

METHOD OF MOMENTS AND LEAST SQUARES FITS GAVE SIMILAR RESULTS.

No description provided.

No description provided.

More…

Study of $p p$ Interactions in the Momentum Range 0.9-{GeV}/$c$ to 2.0-{GeV}/$c$

Shimizu, F. ; Koiso, H. ; Kubota, Y. ; et al.
Nucl.Phys.A 389 (1982) 445-456, 1982.
Inspire Record 12089 DOI 10.17182/hepdata.37051

pp interactions at 11 momenta in the range 0.9 to 2.0 GeV/ c have been studied. The elastic angular distributions, covering the c.m. angular range 22°–90°, agree in general with Hoshizaki's phase-shift analysis which shows the looping 1 D in and 3 F 3 amplitudes in the Argand diagram. About 80% of pn π + events come from the n Δ ++ state at all momenta above 1.2 GeV/ c . The behavior of the density matrix elements of the Δ ++ show no momentum or angular dependence. A large fraction of pp π 0 events also come from the p Δ + state at all momenta above 1.2 GeV/ c . The behavior of the Δ + density matrix elements is similar to that for the case of Δ ++ .

3 data tables

No description provided.

No description provided.

No description provided.


Study of the $\bar{p} p \to \bar{n} n$ Reaction in the Momentum Range 480-{MeV}/$c$ to 728-{MeV}/$c$

Tsuboyama, T. ; Kubota, Y. ; Sai, F. ; et al.
Phys.Rev.D 28 (1983) 2135, 1983.
Inspire Record 189641 DOI 10.17182/hepdata.23789

The total and differential p¯p charge-exchange cross sections were obtained at seven momenta in the range 480 to 728 MeV/c. The total cross sections are roughly consistent with other data. The momentum dependences of the Legendre coefficients a1a0, a2a0, and a3a0 of the differential cross sections do not agree well with the predictions of the Bryan-Phillips model, unlike the case of elastic scattering.

5 data tables

TWO SETS OF DATA ARE GIVEN. THIS FIRST IS THAT PREFERRED USING THE CROSS SECTIONS OF BIZZARI ET AL.

SECOND SET USING BURROWS ET AL., CROSS SECTIONS.

DATA NORMALIZED TO THE CROSS SECTIONS OF HAMILTON ET AL., PRL 44, 1179 (1980).

More…

PHASE SHIFT ANALYSIS OF pi+ p SCATTERING IN THE REGION 194-MeV - 600-MeV

Abaev, V.V. ; Kruglov, S.P. ; Nichitiu, F. ;
Z.Phys.A 322 (1985) 603-610, 1985.
Inspire Record 201692 DOI 10.17182/hepdata.38008

An energy-independent phase-shift analysis ofπ+p-scattering has been carried out at 16 energies in the region 194–600 MeV. The new data on elastic polarization, obtained in LNPI up to 1983, were included.

18 data tables

No description provided.

No description provided.

No description provided.

More…

The Threshold Photoproduction of pi0 on Nucleons and on Few Nucleon Systems

Argan, P. ; Audit, G. ; Bloch, A. ; et al.
Phys.Lett.B 206 (1988) 4, 1988.
Inspire Record 251858 DOI 10.17182/hepdata.29971

The absolute value of the π 0 photoproduction cross section on the proton recently measured near threshold enables to reanalyze previous data collected on 2 H, 3 He, and 4 He relatively to the proton. Absolute cross sections are presented for these nuclei in the energy region extending up to 10 MeV above threshold. The threshold s-wave amplitudes for 2 H and 3 He thus obtained are discussed in relation with the neutron threshold amplitude E ( nπ 0 ) 0+ value.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A COMBINED ANALYSIS OF SLAC EXPERIMENTS ON DEEP INELASTIC e p AND e d SCATTERING

Whitlow, L.W. ; Bodek, A. ; Rock, Stephen ; et al.
Nucl.Phys.B Proc.Suppl. 16 (1990) 215-216, 1990.
Inspire Record 280954 DOI 10.17182/hepdata.2721

None

44 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of enhanced subthreshold K+ production in central collisions between heavy nuclei

Miskowiec, D. ; Ahner, W. ; Barth, R. ; et al.
Phys.Rev.Lett. 72 (1994) 3650-3653, 1994.
Inspire Record 373335 DOI 10.17182/hepdata.19695

In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.

2 data tables

No description provided.

The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.